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ABSTRACT: Membranes have been shown to be exceptionally successful in
the challenging separation of stable oil/water emulsions but suffer from
severe fouling that limits their performance. Understanding the mechanisms
leading to oil deposition on the membrane surface, as influenced by
hydrodynamics and colloidal surface interactions, is imperative for informing
better engineered membrane surfaces and process conditions. Here, we study
the interactions between an oil droplet and a membrane surface.
Hydrodynamics within the water film, confined between the droplet and
the membrane, are captured within the framework of the lubrication approximation, coupled with the van der Waals (vdW) and
electrostatic interactions through the droplet shape, which is governed by an augmented Young−Laplace equation. The model is
used to calculate possible equilibrium positions, where the droplet is held at a finite distance from the membrane by a balance of the
forces present. An equilibrium phase diagram is constructed as a function of various process parameters and is shown in terms of the
scaled permeation rate through the membrane. The phase diagram identifies the range of conditions leading to deposition,
characterized by a “critical” permeation rate, beyond which no equilibrium exists. When equilibrium positions are permitted, we find
that these may be classified as stable/unstable, in the kinetic sense. Further, our results demonstrate the link between the
deformation of the droplet and the stability of equilibria. An upward deflection of the droplet surface, owing to a dominant, long-
range repulsion, has a stabilizing effect, as it maintains the separation between the droplet and membrane. Conversely, a downward
deflection is destabilizing because of the self-amplifying effect of strongly increasing attractive forces with separation distanceas the
surfaces are pulled together because of deformation, the attractive force increases, causing further deformation. This is also
manifested by a dependence of the bistable region on the deformability of the droplet, which is represented by a capillary number,
modified so as to account for the effect of the permeable boundary. As the droplet becomes more easy to deform, the transition from
an unconditionally stable region of the phase diagram to a point beyond which there is no equilibrium (interpreted as deposition)
becomes abrupt. These results provide valuable physical insights into the mechanisms that govern oil fouling of membrane surfaces.

■ INTRODUCTION

The separation of stabilized oil-in-water emulsions poses a
difficult technological challenge, often with important environ-
mental implications. This is particularly so when treating oily
wastewater from various industries, including oil and gas
production, prior to discharge so as to minimize pollution and
contamination of freshwater sources and the marine environ-
ment.1,2 Current treatment methods include flotation,
coagulation, biological treatment, membrane separation
technology, advanced oxidation processes, and combined
technologies.3,4 In particular, membranes have been successful
in effectively separating stable emulsions of oil droplets (<20
μm in diameter), difficult to achieve by other techniques.4,5

While exceptionally successful at performing the actual
separation, membranes suffer from severe fouling due to oil
deposition during operation, which results in loss of
productivity and requires extensive back-washing and cleaning
that can considerably increase costs.
Fouling is a long-standing issue in membrane separation,

particularly when colloidal material is involved. In many cases,

understanding the characteristics of the specific process,
namely, the separated mixture, membrane used, and operating
conditionsparticularly the permeation flux through the
membranecan be used to identify a “critical flux”, below
which fouling is minimized.6 The main idea behind this
concept is that the primary cause of colloidal deposition is the
permeation through the membrane, so that if some repulsive
forces are present, choosing the right permeation rate can
reduce deposition significantly. Furthermore, in certain cases,
deposition has been shown to be reversiblea particle
seemingly deposited at the membrane surface is released
upon shutting off the permeation.7 Understanding the
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influence of the hydrodynamic force due to permeation and
how it balances against surface interactions (such as electro-
static repulsion) between colloidal particles and membranes
will allow for better design of membrane materials and process
conditions; this is particularly so for emulsions, where micron-
scale droplets are involved. Although there has been much
work devoted to modifying the membrane surface, imparting
antifouling properties,8 there is still insufficient mechanistic
understanding of oil droplet deposition and how this is affected
by droplet deformation.
Recent experimental work has begun to provide insight into

droplet behavior at the membrane surface, using microscopic
observation.9−13 These have shown various aspects such as
droplet accumulation, coalescence, and release. In particular, it
has been shown that there is a link between droplet
deformation, as measured using confocal microscopy imaging
analysis, and the reversibility of depositiondroplets that
retained a near-spherical shape were easily washed off the
membrane upon shutting off of the permeation, whereas
deformed droplets remained attached.10

The hydrodynamic interaction between a rigid sphere and a
permeable wall has been theoretically studied quite extensively
(the interested reader may find many of these studies
summarized in ref 14). In particular, the increased viscous
drag induced by the proximity to a permeable boundary has
been studied in the context of the low permeabilities and
colloidal particle sizes representative of commercial membrane
separations15 and also considered the effect of shape and of the
possible existence of equilibrium positions at a finite distance
from the membrane surface.14 While providing important
insight, however, these studies all consider rigid, non-
deformable particles.
Herein, we study the case of a single droplet in equilibrium,

at close proximity to a filtration membrane through which the
surrounding fluid flows. Specifically, a mathematical model is
derived, capturing the interplay between droplet deformation
and the resultant forces acting on the droplet due to
hydrodynamic and colloidal surface interactionsincorpo-
rated via a disjoining pressure. The model is then used to
identify the existence of equilibrium positions of the droplet at
a finite distance from the membrane surface, the stability of
equilibria and dependence on droplet shape and the various
parameters involved.

■ PROBLEM FORMULATION
Geometry and Long-Wavelength Approximation. We

consider an initially spherical oil droplet, with radius R,
immersed in an incompressible Newtonian fluid, at close
proximity to a permeable surface through which a flow is
driven (see Figure 1 for a schematic illustration of the system).
The permeable surface (a separation membrane) is assumed to
have a uniform permeance (permeability per unit thickness) k,
and V0 represents the uniform permeation rate through the
membrane, in the absence of the droplet.
The equations of motion and continuity of the fluid

confined within the gap between the approaching droplet
and the membrane surface can be significantly simplified by
invoking the lubrication approximation, valid when h ≪ R.16

Furthermore, we assume that the interface is immobile,
corresponding with either a very large viscosity ratio or the
presence of a sufficient amount of surfactant molecules;17 this
results in an imposed no-slip condition and a situation where
the flow inside the droplet may be ignored. Under these

assumptions, and accounting for the permeation through the
boundary, we may write the equation for the pressure within
the thin fluid film, separating the droplet and the membrane,
as14,15
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where μ is the fluid viscosity and p is the hydrodynamic
pressure. This equation describes the deviation of the pressure
from the far-field, background pressure away from the drop
(see refs 14 and 15 for further details of this derivation). The
shape of the droplet near the apex is governed by the
linearized, augmented Young−Laplace equation, representing
the normal stress balance at the interface18
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Here, σ is the surface tension coefficient and is the
generalized stress, defined as

= + Πr t p h( , ) ( ), (3)

which includes the hydrodynamic pressure p(r,t) and the
additional stresses, Π(h), resulting from surface interactions
(disjoining pressure); here, these are taken as the simple sum
of an attractive van der Waals (vdW) stress accounting for the
wettability and a repulsive electrostatic stress19

π
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3
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in which AH is the Hamaker constant, λD is the Debye length,
representing the characteristic decay length of electrostatic
repulsion, and ζ is a parameter characterizing the electrostatic
interaction (or electrostatic stress at contact)19

Figure 1. Schematic illustration of a liquid droplet with radius R,
immersed in a second, immiscible liquid close to a membrane with
permeance (permeability per unit thickness) k. h(r,t) ≃ δ + r2/2R + d
is the thickness of the layer confined between the droplet and the
membrane, in which the droplet deformation is d(r,t) and δ is the
distance of closest approach between an undeformed droplet and the
membrane (note that the deformation is shown to be negative in the
sketch, but can be positive as well). The permeation velocity through
the membrane is V0 and λD is the Debye length.
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where kb is the Boltzmann constant, c∞ denotes the
background electrolyte concentration, z the ion valency, T
the absolute temperature, e corresponds to the elementary
charge, and ψ is the electric “zeta” potential, with subscripts p
and m denoting particle and membrane, respectively. We note
that the choice made here with respect to the colloidal
interactions is by no means comprehensive and mostly serves
as an illustrative example of the possible framework offered by
the model. For example, more elaborate forms of the
electrostatic stress may be used, as well as other forms of the
vdW interaction (e.g., including retardation effects as well as a
positive Hamaker constant19,20). Certainly, one may prescribe
other forms of the disjoining pressure that include structural
and solvation interactions, and so forth.
The primary goal of the current study is to examine the

stationary droplet, that is, the case of a droplet at equilibrium.
Under such conditions, the net force acting on the droplet
must vanish and is imposed as an integral constraint

∫∑ = =
∞

F r r t r( , )d 0.
0 (6)

Note that the long-wavelength model formulation focuses
on the region of the droplet closest to the membrane,
specifically on the gap between the membrane and the
dropletthe lubrication areawhere the hydrodynamic
stresses originate. The force calculated from integration of
the hydrodynamic stresses does not include the usual “Stokes
drag” acting on the entire drop, which has been shown to be
much smaller (up to 2−4 orders of magnitude).15 We also
neglect the effect of deformation on the entire drop, assuming
that it is confined to a region on the order of (Rh)1/2 (for a
more detailed view on how stresses change due to whole
droplet deformation see refs 20 and 21).
Scaled, Steady-State Equation. To study droplets at

equilibrium, we solve the steady-state version of eq 1 by setting
∂h/∂t = 0. Equations 1 and 2 are nondimensionalized by
scaling the hydrodynamic pressure using a modified viscous
stress, p = (μV0/k)P, that also incorporates the permeance of
the membrane as a length scale. Through inspection, balancing
the remaining terms in the equations requires the scaling for
the radial coordinate r and gap width h to be r = η(96kR3)1/4

and h = H(24kR)1/2, respectively. Using these scaling
transformations, we have the steady-state dimensionless
equations for the gap width H(η) and hydrodynamic pressure
P(η)
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and the scaled Young−Laplace equation
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Here, as we are also interested in the droplet deformation, we
define the gap width as H = δ̂ + η2 + ̂d . The deflection ̂d (η),
and δ̂, the distance of closest approach to the membrane of an
undeformed droplet are scaled against the hydrodynamic decay
length = kR(24 )H

1/2. The term η2 comes from the parabolic
approximation of the unperturbed, spherical droplet shape.
Recasting the steady-state equations in terms of the deflection
yields the system
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and the scaled equilibrium condition
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The scaled equations contain several dimensionless param-
eters. First, μ σ=̂Ca V R k/0 is a modified capillary number,
accounting for the ratio of the viscous and the surface tension
stresses and differing from the classical capillary number by the
factor R/k, which comes from the hydrodynamic interaction
with the permeable boundary. Next, the scaled permeation ̂V0
= μV0/kζ represents the ratio of the viscous and repulsive
electrostatic stresses at contact. Finally, Π̃ is the nondimen-
sional disjoining pressure defined as

Π∼ = − +
̂ λ− ̂H

A
H

( ) e HH
3

/ D

(12)

with = πζ̂A A /6H H H
3 the scaled Hamaker constant, account-

ing for the ratio of attraction and repulsion stresses and
λ λ=̂ /D D H is the ratio of the electrostatic and the hydro-
dynamic decay lengths. Typical physical values and ranges of
process parameters are shown in Table 1, whereas in Table 2
we summarize all of the nondimensional parameters and
corresponding orders of magnitudes used in the forthcoming
analysis.
Finally, we specify the boundary conditions imposed on the

system of equations. At the origin, η = 0, we have symmetry
considerations, that is

η

η
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∂

=
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0,
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(13)

Table 1. Orders of Magnitude for Dimensional Parameters of the Problem

parameter description parameter description

AH ≈ 10−21 J Hamaker constant R ≈ 10−7 to 10−5 m droplet radius
ζ ≈ 104 Pa electrostatic stress at contact μ ≈ 10−3 Pa s viscosity
λD ≈ 10−9 to 10−7 m Debye length V0 ≈ 10−5 to 10−4 m/s permeation velocity
δ ≈ 10−8 m distance to the membrane k ≈ 10−13 to 10−12 m membrane permeance

σ ≈ 10−2 N/m surface tension = − −10 to 10 mH
10 8 hydrodynamic decay length
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Far from the apex, we expect the pressure to decay back to
the background value, and the deflection to likewise
vanish18,22,23 as η → ∞, which for the numerical scheme
corresponds to the simulation domain η = L, so we impose

η η

=
∂
∂

+ =

̂d

P P

0,

4 0.
(14)

■ RESULTS AND DISCUSSION
In order to obtain the droplet shape and pressure profiles at
equilibrium, where the droplet is stationary and under a zero
net force, we solve the second-order problem given by eqs
9−11 along with the boundary conditions presented in eqs 13
and 14. The system is solved numerically using the AUTO 07p
continuation package,24,25 for parameter ranges described in
Table 2. For all numerical calculations, the domain size is set to
L = 10, which was found adequate in assuring that the pressure
and deformation decay to zero in the far-field, independent of
the choice of the domain size.
Equilibrium Phase Diagram. The main outputs of these

calculations are the distributions of the various stress
components, in particular the hydrodynamic pressure, as well
as the shape of the droplet. However, an even more interesting
outcome is the very existence of a solution for which an
equilibrium exists and (H > 0); beyond a particular region of
parameter space, no such equilibrium exists. We further find
that, for a certain range of parameters, two solutions exist. This
behavior was previously described by Ramon et al.14 for rigid
spherical particles but is here modified by the deformation of
the droplet shape and the inclusion of the vdW force.
The measure used to construct the phase diagrams is the

distance between the droplet and the membrane at the origin,
H0 ≡ H(0) = δ + ̂̂ d (0), plotted against the scaled permeation,

μ≡̂V0 V0/kζ, which represents a main feature of the current
problemthe permeable boundary, a defining characteristic of
the separation membrane (see Figure 2a for an example of the
phase diagram and its general features). When a finite distance
separates the droplet from the membrane under equilibrium, it
means that adhesion may be prevented by repulsive forces.
This distance would be smaller or larger than that obtained for
a rigid particle, dependent on whether there is a downward or
upward deflection of the droplet surface, respectively. When no
equilibrium solution exists we interpret this as depositionthe
droplet makes contact with the surface. Finally, when two

solutions exist, one solution is understood to be stable, at least
in the kinetic sense, whereas the other is unstable. Kinetic
stability refers, here as in the classical sense, to the existence of
an energy barrier in the presence of Brownian motion; even if
the force balance predicts an equilibrium position, there may
still be a thermal “kick” large enough to overcome the energy
barrier and cause the surfaces to make contact. We note that
the calculation of the energy barrier and, hence, a measure of
the actual kinetic stability and its characteristic time-scale,
requires the solution of the full transient problem and is
beyond the scope of the present study. The point of vanishing
stable solutions is also where the unstable branch emerges. On
a plot of H0 versus ̂V0, this point (marked as point 2 on Figure

2a) embodies the existence of the “critical flux”, ̂V0
Cr
, for a

given membrane−emulsion system, as beyond this point
deposition will always occur. Because ̂V0 represents the
operating permeation rate and properties of the emulsion, it
allows a choice of operating conditions to shift the system from
regions of rapid deposition to regions of delayed deposition.

Droplet Profiles at Equi-Valued Scaled Permeation.
Interesting features that accompany the equilibrium solution
are the trends in the distributions of the pressure and
deflection, as well as the overall droplet shape near the origin.
In order to further understand this behavior, we examine the
case of solutions found for an equal value of the scaled
permeation rate, ̂V0 ≈ 2, and their differences. Following the
inset of Figure 3a, points 1−3 marked on the phase diagram
signify, on each of the subsequent plots, stable versus unstable
deflections (a) and their corresponding generalized stress (b),
colloidal stress, (c) and hydrodynamic stress (d) profiles.
Stable solutions are seen to be upward-deflecting, meaning that
repulsion is significant enough to push the droplet surface away
from the membrane surface, resulting in a stable solutionno

Table 2. Definition of Nondimensional Parameters,
Characteristic Ranges of Orders of Magnitude, and
Description

nondimensional
parameters

characteristic
ranges description

μ ζ=̂V V k/0 0 10−4 to 104 ratio of viscous-repulsive stresses

μ σ=̂Ca V R k/0 0−100 ratio of viscous-surface tension
stresses

λ λ=̂ /D D H 1−100 ratio of electrostatic-hydrodynamic
decay length scales

= πζ̂A A /6H H H
3 10−3 to 1 scaled colloidal stress

δ δ=̂ / H 10−5 to 103 scaled distance of closest approach

= kR(24 )H
1/2 10−10 to 10−8 m hydrodynamic decay length

Figure 2. Pressure and droplet profiles for different values of modified
permeation ̂V0. Panel (a) shows H0 as a function of the modified

permeation ̂V0 for ̂AH = 0.001, λ̂D = 1, and =̂Ca 1. Labels correspond
to droplet profiles, pressure distribution, and deflection profiles shown
in subsequent panels. Dashed black line corresponds to unstable
solutions branch. Panel (b) shows droplet profiles for different values
of ̂V0 as indicated. The inset indicates the region of interest. Panels
(c,d) depict pressure distribution and deflection profiles respectively.
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adhesion. Conversely, unstable solutions are seen to be
downward-deflected, which reduces the gap between the
droplet and membrane surfaces compared with the equivalent,
rigid case. The reason behind the unstable nature of this
solution lies in the physics of the hydrodynamic interaction,
which is the main attractive force acting on the droplet at
longer ranges. This interaction increases as the separation
distance decreases, so a downward-deflection is a self-
amplifying mechanismthe permeation decreases the pressure
in the confined gap between the two surfaces, which causes the
downward deflection, which further decreases the pressure and
so on. The scales for both the hydrodynamic stress and the
scaled colloidal stress show that the attractive colloidal stress
component becomes stronger than the electrostatic repulsion
as the droplet apex gets closer to the membrane and thus
increases the negative deflection. This presumably promotes
the irreversible deposition of the droplet on the membrane.
The case examined shows the existence of a stable profile (1)
and two unstable profiles (2) and (3) for the same modified
permeation ̂V0. Therefore, we find that, compared with the
behavior of a rigid particle, deformability can have a stabilizing
effect, but then also exhibits a more abrupt transition. The
cusping is due to vdW attraction, that become dominant at
close proximity and eventually induces a profile reminiscent of
“pinch-off” at the droplet leading edge.

Influence of Process Parameters on Equilibria and
the “Critical Flux”. The influence of the various parameters
characterizing the process is illustrated in Figure 4. Specifically,
the deformability of the droplet is governed by the modified
capillary number ̂Ca, representing the ratio of viscous forces
tending to deform the droplet and surface tension that tends to

Figure 3. Deflection and stress profiles for solutions to equal-values
scaled permeation ̂V0 ≈ 2, for ̂AH = 0.001, λ D̂ = 1, =̂Ca 1,
corresponding with the phase diagram shown in the inset of panel (a),
in which labels 1−3 correspond to profiles shown in subsequent
panels. (a) Deflection profiles ̂d , note the steepness of the deflection
in profile (3). (b) Generalized stress . (c) Colloidal stress Π̃. (d)
Hydrodynamic stress P.

Figure 4. (a) Sketch of the equilibrium phase diagram, identifying the critical scaled permeation ̂V0
Cr

(where ̂V 0=μRV0/kζ) and the detachment

permeation ̂V0
A
, as well as different stability regions. Upper branch correspond to stable solutions (solid black line) and lower branch to unstable

solutions (dashed line). (b) Gap width at the origin H0 as a function of the scaled permeation ̂V0 for different values of the modified capillary

number μ σ≡̂Ca VR k/ . The scaled Debye length λ D̂ = 1 and Hamaker constant ̂AH = 0.001. (c) H0 vs ̂V0 for different values of the modified

capillary number ̂Ca and scaled Debye length λ̂D. (d) H0 vs ̂V0 for different values of the scaled Hamaker constant ̂AH = 0.001, 0.1 and 0.5.
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retain the spherical shape (see e.g. ref 23); the scaled Debye
length λ D̂ represents the ratio of electrostatic−hydrodynamic
decay lengths and hence their relative dominance at long-
range; finally, the scaled Hamaker constant ̂AH indicates the
ratio of attractive−repulsive colloidal stresses considered in the
current problem. A sketch of the equilibrium phase diagram
and corresponding equilibria regions is presented in Figure 4a,
separating regions of stable and unstable parameter space. As
already mentioned earlier, for a given set of parameters, there is
a value of ̂V0 above which no equilibrium exists and this is
interpreted as deposition of the droplet onto the membrane,

occurring beyond a “critical” permeation ( ̂V0
Cr
). However, we

also distinguish between two regions that do permit
equilibriaone region in which both a stable and an unstable

solution exist (for ̂V0
A
< ̂V0 < ̂V0

Cr
, where we define ̂V 0

A as the
point where the unstable branch corresponds with “pinch-off”
of the droplet leading edge) and another which is uncondi-
tionally stable. The latter appears to be the consequence of the
droplet deformability, as shown in Figure 4b. For a rigid
particle ( =̂Ca 0), in the presence of vdW attraction, such an
unconditionally stable region does not exist. However, we see
that as ̂Ca increases, indicating a stronger tendency of the
droplet to deform, two things occur: First, the unconditionally
stable region is pushed to higher permeation rates. This is
presumably the consequence of strongly repulsive conditions,
under which the droplet experiences an upward deflection and
does not make contact with the membrane, and this tendency
increases as it becomes easier to deform the droplet. The
second noticeable effect is that the bistable region becomes
smaller, not only because of the stabilizing effect of
deformation, but also, at large enough ̂Ca, because the “critical
flux” is decreasedand so deformation becomes de-stabilizing.

A reduction of ̂V0
Cr

also occurs when the scaled Debye
length is decreased (see Figure 4c), which results in a shorter-
ranged electrostatic repulsion, compared with the attractive
force resulting from the hydrodynamic interaction. Similarly,
and as can be expected, a larger scaled Hamaker constant
likewise decreases the critical scaled flux (see Figure 4d).

The overall trend observed for the critical scaled flux, ̂V0
Cr
, is

shown as a function of the various process parameters in Figure

5. Increasing the capillary number ̂Ca leads to smaller ̂V0
Cr

and
abrupter transition value (a), a larger modified Debye length

λ ̂
D̂ increases the critical flux (b) and larger values of the scaled

colloidal stress ̂AH decrease the critical flux.

■ CONCLUSIONS AND OUTLOOK

Understanding the interaction of droplets with the surface of
separation membranes is crucial for developing better materials
and improved process conditions aimed at reducing or
reversing fouling during oil/water emulsion separation. With
the use of a hydrodynamic model, coupled with the equation
governing the droplet shape, and incorporating colloidal
attractive and repulsive stresses, we have shown the existence
of different equilibria regions: stable, bistable, and unstable.
These have implications toward regimes under which
deposition always occurs, versus conditions which may reduce
the rate of deposition, or possibly increase its reversibility. The

stability threshold is given by a “critical” scaled permeation ̂V0
Cr

for which, at larger values of ̂V0, a stable equilibrium ceases to
exist. An equilibrium phase diagram was constructed in terms
of different process parameters, reflecting the relative
importance of hydrodynamic and colloidal stresses, both in
terms of their magnitude but also in terms of their range.
Within the phase diagram, stable and unstable droplet shapes
are identified. Stable droplet shapes feature upward deflection,
due to the prevalence of long-range repulsionincreasing the
electrostatic decay length λ̂D results in an increased critical flux
̂V0
Cr
. Increasing the modified capillary number ̂Ca, representing

a more easily deformable droplet, is a primary reason for an
increased stable region owing to an upward deflection, but will
eventually lead to a lower critical flux and an abrupt transition
leading to deposition. The scaled colloidal stress ̂AH in turn
decreases the critical permeation, making the system less
stable. Future possible directions stemming from this work are
the extension of the model to allow droplet spreading and
identifying final shape-contact area, as well as calculating
energy barriers from dynamical simulations.
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