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A B S T R A C T

Polymeric membranes used for separations are complex porous structures, spanning lengths that range from
truly molecular scales up to many micrometers. These porous structures can be characterized by both the spatial
and size distribution of the pores, which can further be divided between the membrane surface distribution
versus the depth distribution. Such structural features have a wide impact on membrane performance, ultimately
dictating the fluid permeability and solute selectivity as well as the propensity for and severity of fouling. It is
thus not surprising that in recent years significant emphasis has been placed on engineering the pore size and
distribution to achieve a specific task. However, despite the technological progress, it is difficult to quantify the
effects of membrane morphology on overall performance. Identifying advantageous porous structures would
benefit design and motivate the development of better control over the formation of a given morphology. In this
discussion, the relative importance of membrane morphologies, manifested as pore spatial and size distributions,
is considered for several illustrative cases: pressure-driven flow as impacted by membrane surface pore locations
and depth morphologies; the selectivity of a porous membrane as affected by a porosity gradient; and the
performance of a composite membrane as impacted by the porous morphologies of the support layer, as well as
the overlaying thin-film. Emphasis is placed on unifying concepts of mathematical modelling, as well as the link
between theory and experimental observation. Finally, some future extensions needed for consolidating struc-
ture–performance models are mentioned.

1. Introduction

Membranes comprise complex porous structures; these function ei-
ther as the actual separation medium, for example in micro/ultra-fil-
tration, membrane chromatography and dialysis, or as a porous support
structure that can impact the overall performance of the membrane, as
in the case of composites used for gas separation, nanofiltration and
reverse osmosis. Fig. 1 shows a collection of illustrative morphological
features, highlighting the diversity in pore size and spatial distributions
found in membranes (taken from Refs. [1–4]). These structural features
can profoundly impact membrane performance, reflected by the fluid
permeance and particle/solute selectivity. Performing exhaustive
characterization of actual membrane performance as related to their
structure can be time-consuming and costly, motivating the use of
mathematical models with which to probe the large parameter space
rapidly. Such models need not necessarily be fully predictive; rather,
they should have the ability to pin-point the most important features
and therefore guide actual fabrication efforts, leading to more pro-
mising avenues for improved membrane performance.

The aim of this discussion paper is to lay out the various ways in
which porous structures influence transport through membranes in
current industrial use, and to provide the theoretical framework behind
the structure–performance analysis. In doing so, we attempt to con-
cisely summarize existing theoretical work, extend some of the pre-
existing theories, and highlight areas in which further work is needed to
better understand and quantify membrane structure–performance.
Where appropriate, we include published experimental verification of
theoretical predictions. Furthermore, we highlight the need for inter-
disciplinary work, to combine the theoretical design strategies with real
membrane application and development.

In order to create a generalized framework for the subsequent sec-
tions, we divide the structures to be considered into two broad cate-
gories, namely porous and composite membranes. A porous membrane
possesses continuum-scale pores and transport through it is governed
by viscous flow (for the solvent), or advection and diffusion (for the
solute). The mode of separation is by sieving at the interface or by
capture within the depth. A typical example of a porous membrane is
shown in Fig. 1a. However, since in many cases the surface of the
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membrane possesses a structure that is different from the bulk material
(for example, Fig. 1c vs. Fig. 1a), one may model the membrane as a
simplified two-layer structure, shown schematically in Fig. 1e: a top
layer, describing the surface region, approximated as a perforated sheet
(with different pore arrangements, as illustrated in Fig. 1f,g), and a
bottom layer, describing the bulk material, composed of a porous
medium. In this paper we shall consider cases in which both layers may
affect membrane performance.

A composite membrane comprises a top-layer thin film and a porous
support as the bottom layer, which may be composed of a different
material (see image and schematic in Fig. 1d and h, respectively). Un-
like porous membranes, transport is considered to be predominantly
diffusive and separation is almost entirely achieved by the top layer,
normally an ultra-thin film of dense polymer [5,6]. However, while the
bottom layer is traditionally solely for structural support, its presence
invariably plays a role in the overall performance and, as recently es-
tablished, must be taken into account [7–10].

The structure of the paper is as follows. We begin by considering
porous membranes in Section 2. We study the surface-versus-depth
interplay and the effect of pore size and pore spatial distribution in the
top layer. We compare cellular (or spongy) and granular structures and
conclude by assessing the selectivity of porous membranes as impacted
by porosity gradients. We then move on to composite membranes in
Section 3. We consider the effect of pore size and spatial distribution in
the top and bottom layers, the relative effects of the top and bottom
layers on performance, and conclude with a note on selectivity. Finally,
in Section 4 we summarize the main points and conclusions, and also
highlight future directions for further theoretical development, re-
quired to pave the way forward, improving the ability to determine
desirable membrane structures, and linking them with fabrication
methods.

2. Porous membranes

In this section we consider porous membranes, as previously de-
fined; see Fig. 1e and f for a schematic and illustration of the nomen-
clature employed in this section. To fix notation, the permeance of a
porous membrane is defined here as the flux achieved for a given

pressure difference,

=k Q
A P

,
m (1)

where Q is the volumetric flow rate, Am is the membrane area and P is
the transmembrane pressure difference. This is related to the Darcy
permeability, k̂, via =k k µhˆ/ , where μ is the fluid viscosity and h is the
membrane thickness (which may be attributed to the top layer, bottom
layer or a combination). Note that k is identical to the commonly used
notation of Lp (or, as often used for NF/RO membranes, A).

In what follows, we examine how permeance is affected by: (i)
surface and depth porosity; (ii) pore-size distribution in the top layer;
and (iii) pore morphology. We conclude by examining the selectivi-
ty–permeance trade-off. Specifically, we begin by studying the viscous
flow through a porous membrane, as affected by pore morphology,
considering the separate effects of the entrance and the ‘depth’. This is
followed by the analysis of the permeance of contrasting morphologies
resulting from the phase-separation process, commonly used for mem-
brane fabrication. Finally, we consider the selectivity of a membrane in
the presence of a porosity gradient.

2.1. Surface versus depth effect

The flow through a porous layer, in its simplest form, may be en-
visioned as that through a bundle of capillaries, where in each in-
dividual ‘tube’ one has a fully developed, viscous Poiseuille flow. It is
also a common, simplified, model for porous membranes, with pores of
radius r and length h (representing the membrane thickness as well),
and corrections introduced for the effective pore area and length, via a
tortuosity and surface porosity [5,6]. However, while normally ne-
glected in this common modelling framework, the top-most section of
the porous layer, where the fluid transitions from the free domain to the
confinement of the pores, may represent a significant mechanism of
energy dissipation, contributing to the overall pressure drop.

Neglecting surface effects is likely to be a good approximation
when, indeed, the resistance to flow is dominated by the bulk.
However, as membranes strive to become thin or ultra-permeable,
surface effects are expected to become important. Examples include

Fig. 1. Membrane morphologies and model representation of a two-layer structure, as viewed from the top and cross-section. (a,e) cross-sectional view of typical
phase-inversion UF membrane (image taken from Ref. [3]) and the representation of the top, perforated sheet overlaying a bottom porous layer. (b,f) Top view of a
porous membrane – periodic, block-copolymer phase inversion membranes, with tuneable pore size (image taken from Ref. [4]) and the representation as a
perforated sheet with a hexagonal array (or square, not shown) of circular pores. (c,g) Top view of a porous membrane - typical phase-inversion membrane with
random pore distribution, showing distinctive regions of high and low porosities (image taken from Ref. [1]), and its representation as a perforated sheet with
randomly located holes. (d,h) The interface between the polyamide ‘active layer’, or top film of a composite membrane, showing distinctive ‘voids’, and the
underlying porous support (image taken from Ref. [2]). Shown below it is the idealized representation of a top film overlying a domain with alternating regions of the
pores and solid matrix of the support.
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increasingly thinner ‘skin’ layers in phase-separated membranes (e.g.
Refs. [4,11,12]), ultra-thin silicon membranes [13,14], carbon-based
membranes, e.g., nanotubes [15] or graphene oxide [16] as well as
biomimetic water channels [17]. In particular, carbon-nanotube and
water-channel-based membranes can pose an interesting scenario,
where a (relatively) thick bulk material poses a very small resistance to
the flow [18]; this, again, would lead to a situation where most of the
pressure drop through the membrane structure occurs at the surface,
near the pore entrance. This has recently been modelled on the scale of
a single nanotube, using molecular dynamics simulations, illustrating
that over 90% of the flow resistance is at the nanotube entrance
[16,19]. A similar effect has also been shown in a recent computational
study, where artificial structures were modelled in 3D, comparing the
flow through a purely porous membrane to that of a membrane with a
bi-layer structure – a porous top and finger-like voids dominating the
bottom [20].

In light of this question, the current section considers transport
through a conceptual bi-layer structure consisting of a thin perforated
sheet, or ‘skin’, overlaying a porous layer (shown schematically in
Fig. 2a). We evaluate the relative importance of this ‘surface’ con-
tribution to the overall resistance to flow. In order to account for the
effect of the top layer, one may resort to the simplest representation,
proposed by Weissberg [21], in which the flow through the membrane
is assumed to be the superposition of a flow through a surface pore of
radius rtop in an infinitely thin plate (Sampson flow [22]) and the flow
through an individual cylindrical tube, with the same radius, of length
(thickness) hbottom (Poiseuille flow [23]). Expressed as the permeance
(using Eq. (1)), this gives

=
+

k
A

r
µ h r

1
[3 (8 / )]

,
m

top

bottom top

3

(2)

for an isolated pore. In Eq. (2) we observe the two contributions to the
pressure drop: the first term in the denominator corresponds to surface
effects, while the second term corresponds to the depth. When the ratio
of thickness to pore-size is large (h r/ 1bottom top ) the flow is pre-
dominantly Poiseuille, while for a thin, dense skin region (top layer)
when h r/ 1bottom top , Sampson flow dominates.

Eq. (2) represents the simplest combination of surface and depth
effects. However, a more comprehensive model requires a full solution
of the flow problem, where both contributions are accounted for con-
currently. To this end, we solve the steady-state Stokes equations,
within a model geometry, as shown schematically in Fig. 2a, depicting a
bottom layer composed of spherical obstacles, connected to a top, ‘free’
fluid domain through a thin perforated sheet (see Appendix A for de-
tails). We note that this is by no means a comprehensive representation

of a membrane structure, but it offers a relatively convenient, self-
consistent way of assessing the impact of morphology.

The plots shown in Fig. 2b illustrate that the top-layer resistance
may play a significant role in the overall permeance of the membrane,
in particular when the porosity of the bottom layer, bottom, is high. For
example, when bottom is fixed at 80%, the permeance when the porosity
of the top layer, = 30%top is only 43% of that obtained when

= 100%top (see Fig. 2b). As we might anticipate, the permeance is
limited by the top layer porosity ( )top when bottom is high (Fig. 2b).
These results suggest that membrane design must consider both these
effects for proper optimization; this is expected to be particularly so for
some high-performance structures mentioned previously, such as ultra-
thin membranes, CNT-based structures, and biomimetic water-channels
– the resistance through all of which is expected to be surface-domi-
nated.

2.2. The effect of pore size and location distributions in the top layer

In the previous section it was illustrated that the resistance to flow
imposed by the surface pores can become important for realistic
structures and, particularly, for thin selective layers or low-resistance
bulk materials. However, the calculations were made for a square-array
periodic lattice while, for most membranes in current industrial use, the
surface pores are not evenly distributed, and are not of the same size
(or, indeed, shape) – see Fig. 1c for a representative image. Of these, the
effect of size distribution has received the most attention, particularly
due to its influence on selectivity through mechanical sieving (see, for
example [24,25]). Shape effects have also been considered, particularly
slit-shaped pores versus circular pores [26]. However, these permeance
calculations still considered the membrane as a bundle of cylindrical
capillaries, ignoring the surface effect. Here, we examine the effect of
pore size distributions on the resistance of the top layer; we then cal-
culate the permeance as affected by the spatial distribution of pores, for
two periodic arrays and, more importantly, a random distribution of
pore locations. First, we consider the simple generalization of the sur-
face contribution in Eq. (2) that accounts for a given pore size dis-
tribution, f r( )top , which was obtained by Jensen et al. [27],

=k M
µA3

,
m

3

(3)

where M3 is the third statistical moment of the pore size distribution.
The log-normal density function has been used extensively to describe
membrane pore-size distributions (see, for example [28]), and it as-
sumes that the natural logarithm of the pore radius is normally dis-

tributed, =f r( ) exptop r
r r1

2
(ln( ))

2top

top top avg, 2

2 so that

Fig. 2. The effect of surface and bulk porosity on the membrane permeance. (a) Schematic of the model configuration. An array of spheres is used to model the ‘depth’
porous structure, with porosity bottom. This layer is connected to a fluid reservoir through a perforated sheet with a surface porosity top. The equations for Stokes flow
are solved within this configuration, from which the permeance is calculated (see Appendix A for details of the calculation). (b) The permeance as a function of the
bottom layer porosity, bottom, calculated for varying surface porosities. Here, we take =h̃ 0top and =h̃ 1bottom .
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=M r exp(3 )top avg3 ,
3 2 , where rtop avg, is the mean pore size and σ is the

standard deviation. In Fig. 3a we consider the effect of the pore size
distribution (for a square array) characterized by the standard devia-
tion, σ, on the flow through the top thin sheet, showing the impact of
porosity on the permeance. We observe that the membrane permeance
increases with the pore size variability. This is due to the fact that the
presence of larger pores increases the flux quadratically with the pore
radius and so strongly impacts the permeance. However, this must be
traded against the fact that higher variability in pore sizes also reduces
the selectivity of the membrane, since larger solutes or particles are
now able to pass.

Next, we consider circular pores of a fixed radius rtop and vary their
spatial distribution. For periodic square or hexagonal arrays, a gen-
eralized expression of Eq. (2) for the pressure drop is given by Ref. [27],

=k
r

A µ r L3 [1 ( / ) ]
,top

m top top

3

3 (4)

where Ltop is the inter-pore distance to the nearest neighbour (as seen in
Fig. 1f) and ξ is a constant depending only on the geometrical layout of
the pores in the layer; an exact expression exists for ξ in the form of an
infinite series, giving 1.9 for a square lattice and 2.3 for a hex-
agonal lattice [27]. The term containing ξ accounts for the flow through
pores when they are closer to each other and no longer isolated, in
which case, they hydrodynamically interact, i.e., the flow through one
pore affects the flow through the neighboring pores. This interaction
yields a larger flow per pore than that predicted by the classical
Sampson result for an isolated pore having an identical pressure drop
(compare Eq. (4) with Eq. (2)). In Fig. 3b we compare the analytical
prediction (4) with numerical simulations for a range of top-layer
porosities, top in either a square or hexagonal array (see Appendix B for
details). Good qualitative agreement is observed, with deviation only
for high porosities (when r L/top top is not so small). However, in practice
it is more difficult to manufacture periodic pore arrays, so an interesting
question is – how much do we lose in permeance, when the pore ar-
rangement is not periodic? To this end we also compute, numerically,
the permeance of a random arrangement of non-overlapping circular
pores and include this in Fig. 3b (see Appendix B for details).

We find that the hexagonal lattice yields the highest permeance,
with a small drop for a square lattice and a more substantial drop for a
random distribution. The reason for this is that, in the random case,
pores can be bunched together, creating areas of impermeable space on
the surface. This implies that the fluid approaching the membrane in

these areas must be significantly diverted to reach the pores, which
leads to additional dissipation and, hence, reduced permeance. Periodic
distributions out-perform the random case by at least a factor of two,
for all porosities top. The relative increase in permeability offered by
periodic distributions becomes even greater at higher porosity (note
that Fig. 3b is on a logarithmic scale). Consequently, this indicates that
it is well worth investing resources in manufacturing membranes with
ordered arrangments of pores and high porosity.

2.3. ‘Cellular’ versus ‘granular’ structures

A commonly used process for fabrication of porous membranes is
phase-separation, which may be induced by several techniques. Such
membranes may generally evolve into two distinctive structures: (1) a
cellular structure, in which the nucleating droplets during the phase-
separation process are the polymer-poor phase, or (2) a granular
structure where the solid phase of the membrane comprises the
polymer-rich droplets and the membrane resembles a porous bed of
spheres [5]. Fig. 4a presents two representative images showing PVDF
membranes fabricated using two non-solvents, leading to either a cel-
lular or granular structure [29]. It seems that the cellular structure is
more commonly found in commercial membranes, although recently
developed block-copolymer membranes appear to possess an inherently
granular structure [12,30].

In light of the possibility to manufacture both structures, a question,
yet to be considered, is which would be better in terms of the resulting
permeance. We therefore turn to model the viscous flow through
structures that mimic a cellular/granular morphology (schematically
shown in Fig. 4b). We note that, when simulating the cellular structure,
the diameter of the sphere representing the void is larger than the edge
length so that there is an overlap with neighboring periodic spheres, so
as to ensure inter-connectivity and continuity of the resultant flow path,
which places a limit on the range of physically valid porosities. Here,
only the flow through the bottom layer is considered, and the entrance
effect is not accounted for. Further details of the performed calculation
may be found in Appendix C.

An illustrative calculation is shown in Fig. 4c for the cellular and
granular morphologies. The results show that a granular structure has a
better permeance than a cellular structure for a given porosity. This
could have interesting implications if a granular structure could, from a
solid-mechanics perspective, potentially also offer a more robust
structure in terms of compaction. Such properties may help reduce the
deformation undergone by membranes upon exposure to the applied

Fig. 3. The effect of surface pore size and spatial distributions on the permeance of an infinitely thin, perforated sheet, representing the ‘surface effect’ of a
membrane. (a) The permeance as a function of top, calculated for a square array of pores with size distributions of different variance, σ. (b) Calculated permeance vs.
the top layer porosity, top, for a uniform pore size, spatially distributed as either periodic square and hexagonal arrays, or as a random distribution. Numerical
calculations are detailed in Appendix B; the analytic calculations are based on [27]. For the random distribution, there are 30 simulations (samplings) for each point
and one standard deviation is represented by the error bars (see Appendix B for further explanation). Note that the curves representing = 0 in (a) and the square
pore array in (b) are the same and so give an idea of the connection between the two figures (both lines are blue in the color version).

S. Mondal, et al. Journal of Membrane Science 588 (2019) 117166

4



pressure, particularly support membranes for composites used in high-
pressure applications. We note that, since the calculation is made for a
repeating, periodic cell, it cannot fully account for the complexity of a
real-life structure; in particular, the question of pore conncetivity is
unaccounted for and is an important feature in determining true per-
formance of a given structure. However, the framework used here
should provide a qualitative indication of the general effect that these
morphologies are expected to have on the resistance to viscous flow.
More refined calculations and comparison with careful experiments are
needed in order to shed further light on these questions.

2.4. Selectivity of porous structures

The main mode of selectivity for porous membranes is size-based
mechanical sieving. While other mechanisms, for instance, electrostatic
interaction or Brownian motion, may become important under certain
conditions, these involve material-specific physicochemical properties
and are beyond the scope of the current discussion (an example of pore-
entrance effects may be found in Ref. [31], while hindered transport
within the pore structure has been considered extensively, with a good
overview given in Refs. [32,33]). The selectivity is normally re-
presented as a function of the size ratio between the radius of the
particle being rejected (rp) and the membrane pore radius (rtop),

r r/p top. Early work by Ferry [34] considered the pure effect of vo-
lume exclusion on the rejection of a rigid sphere by a cylindrical pore,
yielding the following, simple yet remarkably representative, relation
for the ratio of the concentrations outside and inside the pore, or
sieving coefficient,

=S (1 ) [2 (1 ) ].2 2 (5)

As already mentioned in the previous section, most commercial
membranes do not have a uniform surface pore size and exhibit a dis-
tribution of pore sizes. To determine the significance of the pore size
distribution on the sieving of a given particle size, one may integrate
over all possible ratios λ to find an effective sieving coefficient. Variants
of Eq. (5) have been developed over the years but the differences may
be considered as refinements (for example, a strategy for estimating λ
[24]).

A natural outcome of this retention mechanism is a trade-off be-
tween the permeance of a membrane and its separation capacity [25].
Fig. 5a illustrates this, comparing a collection of commercial mem-
branes and calculations based on a simple sieving model, for a log-
normal pore size distribution, as well as for isoporous membranes. As
may be seen, the selectivity–permeance trade-off has a different char-
acteristic shape, at a given mean pore size, dependent on the distribu-
tion variance, σ (see different colors in Fig. 5a). This curve is shifted to
the right, increasing the permeability at a given selectivity, with a de-
crease in the parameter h /top top, the ratio of the skin layer thickness and
its porosity. For a given thickness and porosity, isoporous membranes

retain higher permeance as the mean-pore size decreases (and se-
lectivity increases). However, the experimental data shows that most
isoporous membranes reported so far, do not outperform ‘conventional’
membranes; clearly, the key to improving the trade-off curve, particu-
larly for isoporous membranes, lies in the reduction of the skin thick-
ness and increasing the surface porosity (see, also [12,30]).

In the framework described above, the sieving is considered to occur
solely at the pore entrance, so particles that enter the porous layer are
assumed to be carried through the entire membrane and into the
permeate. However, in practice, a particle may be slowed down and
possibly captured within the depth of the membrane. While the case of
hindered transport through a pore is a classical problem in the mem-
brane literature (see the review by Deen [32] and references therein), it
is not commonly used for assessing membrane selectivity, presumably
due to the complexity of the calculation and required intimate knowl-
edge of the pore structure. More importantly, the case of solute/particle
uptake in the presence of a porosity gradient has received far less at-
tention. Conceivably, the additional possibility of capture within the
membrane may provide a route to modifying the usual permeabili-
ty–selectivity trade-off curve, albeit with an inherent risk of fouling
(which also exists with external sieving, but here will become internal).
This becomes particularly interesting when considering cases where the
membrane possesses a depth gradient in porosity. Specific applications
such as membrane chromatography, where such capture is at the core
of the process, can likely benefit from this design consideration. For this
case, which is essentially depth filtration, the effect of a porosity var-
iation across the depth of the filter medium (the membrane) can be
studied in detail using the method of homogenization, which accounts
for microstructural details and yet produces a model that considers the
transport through an ‘effective’ medium, therefore significantly redu-
cing the computational cost [35] (see Appendix D). Indeed, as is seen in
Fig. 5b, where the selectivity is plotted against the permeance for a
membrane with a uniform pore size but with varying porosity and
porosity gradient, one has a family of possible curves that modify a
given single curve one obtains when only surface sieving is accounted
for. Furthermore, the calculations illustrate that a positive gradient in
porosity (porosity increasing with depth) provides better selectivity at a
given surface porosity. This additional depth contribution allows a
further tweak of the membrane selectivity at a given surface pore size;
needless to say, such control over the depth structure is non-trivial, and
these results merely serve as the motivation to seek the means by which
such structures might be achieved in practice.

3. Composite membranes

Membranes used for reverse osmosis, as well as for gas separation,
are composite structures comprising a porous support over which an
ultra-thin film is fabricated, which serves as the primary selective layer
(often referred to as the ‘active’ or ‘barrier’ layer) [5,6]. The support,

Fig. 4. (a) ‘Cellular’ vs. ‘Granular’ morphologies of a
PVDF membrane fabricated using the common non-
solvent-induced phase separation technique [29]. (b)
Different morphological configurations of the ‘bottom’
layer of a porous membrane, with cubic lattice arrange-
ment of the voids or obstacles (to create the granular or
cellular matrix respectively). In this figure, = 100%top so
the top layer does not exist. (c) Calculated permeance vs.
porosity for the two morphologies.
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generally assumed to provide structural integrity alone, is usually a
porous ultrafiltration membrane. Transport through the thin film occurs
by a solution-diffusion mechanism [36,37], which is assumed to govern
all permeating species separately, i.e., for the case of desalination,
water and salt transport is uncoupled. While recognized quite early and
investigated by several researchers [38–41], the effect of the support on
the overall transport of a composite appears to have begun receiving
much-needed attention only recently [7–10,42–47]. Furthermore, in
the case of polyamide thin films used for desalination, recent evidence
shows that the top layer is not homogeneous and contains voids
[48–51], which have been shown to be liquid-filled under normal op-
erating conditions [48]. These features, mostly of a geometrical nature,
are not accounted for in the classical model, where it is implicitly as-
sumed that the membrane is a flat, homogeneous layer, and that the
solute and solvent are assumed to diffuse independently, with their
transport governed by the diffusion equation.

In the following section we examine how the overall permeability of
the composite structure is affected by the support layer properties,
namely pore morphology and solute diffusivity within the solid-phase,
as well as the porous nature of the thin film. We conclude by com-
menting on the effect of structure on the selectivity–permeance trade-
off.

3.1. Effect of the support on transport through composites

The porous support, generally made from an impermeable solid
matrix, creates an obstruction to the transport out of the top, dense,
active layer; it has so far been generally assumed that only the pores at
the support-film interface allow transport and so, theoretically, the
overall permeance of the composite membrane is always lower than
that of the unsupported thin film. This effect has recently been con-
firmed experimentally for composite membranes used in both gas se-
paration and desalination [9,10]. In the case of desalination mem-
branes, thin films, created through support-free interfacial
polymerization, were placed on supports possessing different per-
meances, illustrating a clear correlation between support permeance
and the overall composite permeance, as shown in Fig. 6a [10]. A si-
milar approach was used to demonstrate the effect of support porosity
and film thickness in the case of gas-separation membranes, shown in
Fig. 6b [9]; here, the experimental results also compared well with
theoretical predictions.

To illustrate the main effects leading to the support impact on
overall transport, we first state the general mathematical problem un-
derlying the modelling attempts made so far in the literature
[7,8,38,40,44]. Transport through the top layer, according to the

solution-diffusion model, consists of an initial stage where the solvent
or solute partition into the polymer phase, followed by diffusion along a
gradient in the chemical potential. Furthermore, the flux of the various
components of the mixture is assumed to be decoupled [36,37]. While
the gradient in chemical potential may be due to pressure or con-
centration, dependent on the application, we follow the compositional
distribution of a diffusing species along the depth of the top layer,
governed by the Laplace equation,

=C 0,2 (6)

in which the concentration, C, is scaled with respect to the feed and
permeate streams (subscripts f and p, respectively), via

=C c c c c( )/( )p f p . The boundary condition applied on the feed side
is, simply, . However, the bottom of the film may be in contact either
with the fluid within a support pore, in which case the boundary con-
dition is a perfect sink,

=C 0, (7)

or with the solid phase of the support material, where a no-flux con-
dition has commonly been imposed, i.e.,

=Cn 0, (8)

on the solid support material, considered to be impermeable to the
diffusing species, withn denoting the unit normal vector. The assump-
tion of no-penetration into the support solid material may be relaxed, as
will be discussed below. We also note, in this context, that while it has
been shown that the support impacts transport, there is no direct ex-
perimental evidence on the degree of transport hindrance manifested
by different support materials, in the solid phase. Finally, a periodic
boundary condition is imposed on the remaining boundaries, forcing
symmetry. This applies to periodic pore arrangements; for details of the
calculations in the case of random pore distributions, please refer to
Appendix E.

The effective properties of the composite membrane, such as its
permeance, will depend on the thin-film thickness (htop) and the pore
size of the support (rbottom), as well as its porosity ( bottom). A previous
study has shown that permeance is maximized when increasing the
number of pores at a constant porosity, i.e., having many small pores is
better than having fewer large pores [7].

An empirical relation of the relative permeance (kr) - the permeance
of the composite relative to that of the thin film in the absence of the
support layer - has been obtained by Wijmans and Hao [8] from a fit to
data from numerical calculations,

Fig. 5. (a) ‘Surface’ selectivity vs. per-
meance. Experimental points from the lit-
erature, with empty symbols representing
isoporous membranes (taken from Ref.
[12]). Lines are calculations based on a
simplified model that accounts for me-
chanical sieving at a pore entrance and
Poiseuille flow through straight cylindrical
pores (see, e.g. Ref. [25]). The even-colored
lines represent membranes with equal skin
layer thickness/porosity ratios (h/ , each
representing the ‘top’, in this case), while
dotted vs. solid curves represent isoporous
( =0) and log-normal distributed pore size
distributions, respectively. (b) ‘Depth’ se-
lectivity vs. permeance, the consequence of
capture within the membrane structure,
calculated for a varying depth porosity

= +z m z( ) ( 0.5)bottom 0 . The parameters m and 0 represents the porosity gradient and initial porosity, respectively, which are varied proportionately so that the
value of bottom is within the theoretical bounds of [1 /6,1] in three dimensions (see details in Appendix D).
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This correlation predicts the relative permeance within 5% of the
numerical calculations for all cases evaluated, which included three
different pore distribution patterns and multiple pore size variations
with up to four different pore sizes. An analytic solution to this problem
has also been derived, using asymptotic methods, assuming
r h/ 1bottom top [44], yielding

+
k

r h
L h r r G

4
4 4 (0)

,r
bottom top

top bottom bottom
2 (10)

where L is the inter-pore spacing andG (0) 0.62 is the Green's function
at the origin (see appendix in Ref. [44]). Eq. (10) matches well with the
numerical predictions when <r h/ 0.2bottom top . It is naturally useful to
have analytic expressions from which it is straightforward to calculate
projected properties, rather than perform the full numerical calcula-
tions.

We now turn to consider another important aspect: the distribution
of pore size and their spatial location. Previous modelling studies have
assumed periodic pore arrangements, which clearly do not represent
the random pore distributions observed in commercially used supports
(see, for example, Fig. 1c for a representative image of a polysulfone
support membrane). Within a periodic array, the effect of pore size
variation has been examined, to some extent, by Wijmans & Hao [8],
showing that having pores of different sizes on a periodic lattice made a
very small impact on the permeance. Here, we further extended the
model to incorporate the spatial distribution of the pores in the support,
calculating the relative permeance for random pore locations, com-
pared with that obtained for two representative periodic distributions
(see Fig. 6c). We note that as the porosity increases, the standard

deviation of the mean value (the data points in Fig. 6c) decreases, at-
tributed to the lower available area for the sampling (see Appendix B).

The main outcome of the foregoing analysis is that a composite
structure will always have a lower permeance than the free-standing
thin film, due to obstruction by the support when the support material
has a permeability much smaller than that of the ‘active layer’ (which
has been assumed to be the case for supports used in NF/RO and gas
separation [7,8,10,45]). This obstruction and consequent reduction in
permeance becomes more severe as the ratio of film thickness to pore
size decreases, at a given porosity (or, conversely, as pore size increases
while the film thickness is fixed). Another interesting feature is that the
periodic pore structures in the top layer of the support membrane show
very little difference between square and hexagonal arrays (the latter
being slightly better) and produce a higher permeance than the random
distribution. However, the increased permeability when shifting from a
random to a periodic pore arrangement is not very large and is, for the
most part, smaller than 10% and, at most, 20% (see Fig. 6c). This may
shed some doubt on the motivation for using periodic supports, should
they prove more expensive and complicated to produce. The advantage
of such membranes may still be found in the event that the overall
surface porosity would far exceed their random counterparts, with
small pore size: this is the best strategy suggested so far for maximizing
the overall permeance [7,8].

On the other hand, a strategy that has theoretically shown a large
potential impact on the permeability is the fabrication of the composite
using a support featuring a solid that is more permeable to the solvent
(water, say, in the case of desalination membranes) than is currently
used [7]. In this case, the solid fraction (the grey shaded pillars in
Fig. 1h) is partially diffusing instead of a non-penetration boundary,
and can be transformed by modifying the flux continuity boundary
condition as [7].

=D C D C ,f f s s (11)

Fig. 6. The effect of support pore mor-
phology on transport through a composite
membrane. (a) Experimentally measured
permeance of thin-film composite desalina-
tion membranes, where an identical poly-
amide membrane was placed on supports
with varying permeance. Taken from Ref.
[10]. (b) The relative permeance (scaled
against that of the free-standing thin film)
of a gas-permeation composite, shown for
supports with different porosities, as a
function of the film thickness, scaled against
the pore size ( =H h r/top bottom). Solid curves
are theoretical predictions. Taken from Ref.
[9]. (c) Model calculations showing the
variation of the relative permeance with
support porosity, for different scaled top-
layer thicknesses. Calculations made for
two periodic arrangements of the support
pores, as well as a random surface dis-
tribution. The error bars represent one
standard deviation and 50 simulations
(samplings) are done for each point. (d) The
effect of transport through the solid phase
of the support material on the relative per-
meance, shown in terms of the ratio of the
diffusivity in the support material vs. the
diffusivity in top film. Calculations shown
for two support surface porosities and
scaled film thicknesses. Taken from Ref. [7].
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where D is the diffusivity of the species, with subscripts f for the film
and s for the support region. This condition distinguishes the impact of
the permeable support layer on the overall permeability of the com-
posite membrane. The influence of the relative support diffusivities
D D( / )s f on the permeability is depicted in Fig. 6d. In the limiting case of

D D/ 0s f , the results correspond to the case of an impermeable sup-
port as shown in Fig. 6c. The figure strongly indicates that the support
diffusivity significantly enhances the overall permeability compared
with the case of an impermeable support. However, the effect of sup-
port diffusivity is gradual (with increasing diffusivity) for smaller film
thickness, comparing the curves for =H 1 and =H 10, where

=H h r/top bottom is the ratio of the film thickness to support pore radius.
Substantial improvement of the overall permeance is already observed
when the transport through the solid support is comparable to the top
film [7]. Illustrative results shown in Fig. 6d suggest that even a modest
improvement in the permeability of the support solid can impact the
performance much more than any other parameter change. In fact,
early asymmetric desalination membranes possessed this feature, where
the top skin layer was the same material as the underlying porous
structure that acted as the support. In that case, the relative diffusivity
(in Fig. 6d) would be unity. However, as can be seen, even much
smaller values of the relative diffusivity produce a discernible effect. A
possibly promising avenue to improve upon the overall performance of
the composite structure would therefore be to make the support more
‘transparent’ in terms of its obstructing properties, leaving its function
to be purely mechanical, as originally intended. However, to do so in
practice may prove to be challenging from a materials and fabrication
standpoint, as compatibility between the overlaying film and under-
lying support and the effect on the interfacial polymerization reaction
are not yet clearly understood.

3.2. Effect of ‘voids’ in the thin film

We now turn to consider the structure of the overlaying thin film,
the part of the composite responsible for the actual separation (in the
case of liquids; for gases, the ‘gutter’ layer, added so as to reduce the
restriction imposed by the support, as well as the support may also
affect separation properties – see, for example [41,45]). Recent work
has shown, through improved resolution and careful use of SEM and
TEM imaging techniques as well as other methods, that the structure of
aromatic polyamide thin films is not homogeneous and contains

distinctive voids [48–52] (see Fig. 7a and b). Furthermore it was shown
experimentally that these voids are, at least in part, connected directly
to the permeate space. This was shown indirectly, by illustrating the
presence of holes in the back surface of the polyamide layer [2,50,53],
where these holes presumably connect closed-off voids with the
permeate space. This was further corroborated experimentally by back-
filtration of nanoparticles, introduced through the support side of a
composite membrane [54] (see Fig. 7c). These nanoparticles were then
imaged using TEM, and found deposited within the inner surface of the
voids, illustrating their connectivity with the permeate space as well as
their separation from the feed space.

This new insight on the structure and resulting transport pathways
has yet to be comprehensively studied theoretically. Recently, this has
been studied by Wong et al. [55] and Lin et al. [56], where the diffusion
through a composite membrane was considered, including the presence
of voids, modelled as inclusions with a large diffusivity compared with
that of the surrounding material. The effect of the size and overall
fraction of voids in the film was considered, with particular attention
paid to the roughness, possibly resulting from the presence of these
voids. Lin et al. [56] concluded that the main contribution to the overall
transport in the thin film is dominated by the diffusivity, rather than the
void fraction or partition coefficient. However, this calculation did not
consider the possible direct connectivity of voids with the permeate
space, nor the relative position of the voids with respect to the support
pores. In such cases, Wong et al. [55] showed that the relative location
of the voids within the film may have a large impact on the perme-
ability, particularly when the voids are well-connected with the
permeate space. However, only a minor improvement is possible if the
voids are not in direct communication with the underlying support
pores; in the presence of a ‘base film’ covering the support pores, the
overlaying voids are of little impact [55,56]. In contrast, when there is
no such base film and the voids are well-connected to the permeate
space, the impact of the voids becomes pronounced and a clear theo-
retical correlation appears between the observable roughness of the
film, and the permeance of the composite (see Fig. 7d). This correlation
has been a long-debated feature in the experimental literature, which
has often shown inconsistent trends of roughness–permeability. Under
the conditions described above, the increased permeance may be
readily attributed to the larger surface area of the undulating film
compared with a flat one. When morphology is well-controlled and the
film is thin enough to be considered a continuous phase, there is clear

Fig. 7. Effect of ‘voids’ in the thin film on
transport. (a) Elemental TEM section of an iso-
lated polyamide film, showing nitrogen-con-
taining red regions identified as polyamide en-
closing dark ‘void’ regions. Taken from Ref.
[48]. (b) Cross-sectional SEM image of a poly-
amide film, illustrating potential pathways from
the feed side and into voids connecting to the
support, permeate side. Taken from Ref. [50].
(c) Back-filtration experiment with stained na-
noparticles, shown lodged within ‘voids’, on the
support-side of the polyamide film (the direction
from which they came with the filtered feed).
Taken from Ref. [54]. (d) Model calculations of
the increased trend in relative permeance with
the film roughness, when voids (correlated with
the roughness) are contained in the film and are
well connected with the permeate space. Num-
bered points refer to the model structure on the
right, where the concentration field and diffu-
sion pathlines are also shown. Taken from Ref.
[55].
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experimental evidence that increasing the surface area by ‘crumpling’ is
a good strategy for increasing permeance [57,58]. Further refinement
of the experimental characterization of these morphological features,
accompanied by modelling of the impact on transport, are likely to
prove important steps in advancing better design.

3.3. A note on selectivity and rejection in composite membranes

An important thing to remember is that, to good approximation, all
the morphological features considered in the previous section equally
affect all diffusing species, and so do not change the intrinsic selectivity
of the membrane. This is expected to hold true provided the assumption
of decoupled transport is valid. However, some impact on the observed
rejection can theoretically occur and is worth a brief mention. In the
case of a solvent/solute separation, where the solvent transport is
dominated by an externally controlled applied pressure while the solute
transport is driven primarily by the concentration difference, it can be
shown that the solute rejection, a common measure of process se-
lectivity, may be modified by the membrane morphology. This is a
consequence of the ability to fix the solvent flux (albeit at a possible
energetic penalty if a larger pressure is required) while modifying the
solute flux [7]. Analytically, it has been shown asymptotically that the
rejection (Rs) depends on support properties (pore radius and porosity)
according to the relation [44]

+
R

r
1

1 /˜
,s (12)

showing that increasing the pore size, for a given porosity, will increase
the rejection. The implication is that one may potentially tune the re-
jection of a membrane through manipulation of support morphology,
offering an extra degree of freedom, beyond the structure and chemistry
of the top layer.

4. Conclusions

In this discussion paper we have set out to outline the forefronts in
membrane structure–performance modelling, considering two broad
classifications of membrane: porous and composite. In each case we
quantified the membrane performance through the permeance and,
where appropriate, selectivity. We first examined porous membranes,
establishing conditions for which the surface porosity impacts the
overall permeance of the membrane. The impact on performance of the
surface layer as the pore size and pore spatial distribution are varied,
was quantified. Periodic, isoporous configurations were found to have
the largest permeance (with the particular periodic structure, e.g.,
square or hexagonal, having only a small impact on the performance).
Further, two types of depth structures were considered – granular and
cellular – showing how granular layers provide an improved per-
meance. While this must be considered alongside the corresponding
structural integrity, it nevertheless uncovers a potentially promising
route to designing better membranes. Finally, we considered membrane

selectivity and showed how this is affected by surface porosity and its
distribution; moreover, it was demonstrated that, by considering cap-
ture within the membrane, the selectivity can be tuned, particularly
when one can design membranes with depth porosity variations.

In a similar spirit, we then turned our attention to composite
membranes and examined the effect of the pore size and spatial dis-
tribution of the support on the overall composite permeance. Here we
demonstrated how the support pore size and porosity impact the per-
meance with the maximum permeance achieved with small pores and
large porosity. Although the spatial distribution of pores had some
impact, it is not dramatic (generally, at most a 20% difference). This
suggests that, while an increased porosity of the support is desirable to
improve permeance, there is no significant advantage in switching to a
periodic, isoporous support. Another strategy for decreasing the impact
of the support is by fabricating this from a material that permits some
diffusion of the permeating species through the solid phase. Pores or
voids within the top layer of the composite can dramatically impact the
permeance, assuming that they are connected with the permeate space;
if correlated with increased surface roughness they contribute to a
higher permeance through increased surface area.

An overarching theme of this paper was model simplicity. While this
strategy offers a great deal of value in understanding seemingly com-
plex processes, more elaborate modelling can provide a much more
detailed picture. Ideally, the simple models that have been laid out here
serve as a route to sweeping the parameter space to determine the areas
in which effort should be focused. From here, more detailed modelling
techniques can provide a way of fine-tuning the results, alongside ac-
tual experimentation. One notable avenue in need of further study is the
development of a more quantitative method for calculating the per-
meance of a porous membrane where a fraction of the membrane leads
to dead ends. While such membranes are prevalent, strategies that
determine from a surface of pores how many are actually active are not
well established. A second area of study concerns the hindered trans-
port of particles through a membrane. Here, the retardation rather than
trapping of particles may be used as a separation tool. Incorporating the
notion of porosity-graded filters introduced in this perspective paper
could lead to interesting new avenues for study in this area.

We hope that this discussion paper has laid the groundwork for
future studies in which mathematical modelling efforts and experi-
mental techniques are unified to drive the forefronts in membrane se-
paration.
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Nomenclature

Am Membrane area, m2

Ãm Dimensionless membrane area, scaled as =A A L~
m m

*2

Cf s, Concentration of the species in the film (subscript f) and in the support (subscript s), kg m/ 3

Df s, Diffusivity of the species in the film (subscript f) and in the support (subscript s), m s/2

H Dimensionless thickness of the film, scaled as =H h r/
h Thickness of the membrane, m
hbottom Thickness of the membrane bottom layer, m
h̃bottom Dimensionless thickness of the membrane bottom layer, scaled with L*

htop Thickness of the membrane top layer, m
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h̃top Dimensionless thickness of the membrane top layer, scaled with L*

k Membrane hydraulic permeability, m Pa s/ .
k̃ Dimensionless membrane hydraulic permeability, scaled as =k kL mu˜ /*

kr Relative permeance as defined in Eq. (10)
Lp Same as k; Membrane permeance, m Pa s/ .
L* Typical length scale, taken as the distance between the pores, m
P Hydrodynamic pressure, Pa
P̃ Dimensionless hydrodynamic pressure, scaled as =P Pµv L˜ /0

*

Q Volumetric flow rate, m s/3

Q̃ Dimensionless volumetric flow rate, scaled as =Q Qv L˜ 0
*2

r Radius of the membrane pore, m
rp Radius of the particle rejected, m
rbottom Radius of the membrane pore in the bottom layer, m
r̃bottom Dimensionless radius of the membrane pore in the bottom layer, scaled with L*

rtop avg, Average pore radius in the membrane top layer, m
r̃top avg, Dimensionless average pore radius in the membrane top layer
rtop Radius of the membrane pore in the top layer, m
r̃top Dimensionless radius of the membrane pore in the top layer, scaled with L*

Rs Membrane solute rejection
S Sieving coefficient, as defined by Eq. (5)
v Fluid velocity flow field, m s/
v0 Typical velocity scale, m s/
ṽ Dimensionless fluid velocity flow field
Greek symbols

P Transmembrane pressure drop across the membrane, Pa
λ Size ratio of the particle being rejected (rp ) and the membrane pore radius (r)
μ Viscosity of the solution filtered, Pa s.

bottom Porosity of the bottom layer
top Porosity of the top layer
σ Standard deviation in the membrane pore size distribution
ξ constant dependent on the geometrical layout of the pores

Appendix A. Calculation of viscous flow through two-layered membrane.

For the calculations shown in Fig. 2, we model the flow inside a structured domain composed of a free fluid domain connected to a porous domain
through a perforated sheet. The velocity field is described by the Stokes equations (momentum balance for low-Reynolds-number flows):

= =v vand µ P0 02

where v is the steady-state velocity field, P is the hydrodynamic pressure and µ is the viscosity of the fluid. At the membrane interface =z( 0) we
impose a no-slip boundary condition. It is assumed that the pressure approaches two distinct limiting values at ±z . The flow is primarily in the
z-direction. On the xz and yz plane boundaries, we apply the periodic boundary condition. Now, using the scaling =P Pµ v

L
˜ 0 ; =v v ṽ0 ; = L

˜
, we

nondimensionalize the above equation as,

= =v v P˜ ˜ 0 and ˜ ˜ ˜ ˜ 02

where L is the characteristic length scale represented by the inter-pore distance (i.e., from the centre of one pore to the next) and v0 is a typical
velocity. Note that L can be related to the property of the top or bottom layer, as applicable. The permeability is defined as = =k L Q A P( ) /p m , as
mentioned in Eq [1]. Once again we nondimensionalize this relation using the scaling: =Q v L Q̃0

2 and =A A L˜m m
2, to get the scaled permeability as

= =k k Q A P~ / ~ ~µ
L m . Note that it is this k̃ (dimensionless) that is referred to as the permeance in Figs. 2–4. The membrane porous structure is

mimicked using impermeable 3D spherical obstacles (representing the ‘depth’ porous layer) and holes in the xy plane (infinitesimally thin top layer,
=h~ 0top ) as shown in Fig. A1. In scaled form, the depth of the bottom layer is =h~ 1bottom and, similarly =P~ 1. The radius of the circular holes

(pores in the top layer, r̃top) is represented in dimensionless form as =r r L˜ /top top ; r̃top is determined corresponding to the porosity of the top layer,
= r̃top top

2 when arranged in a square lattice, )r~ 0,top
1
2 . The radius of the spherical objects =r r L(˜ / )bottom bottom in the bottom layer is determined

from the porosity of the bottom layer, = r1 ˜bottom bottom
8
3

2 arranged in a hexagonal lattice configuration )r~ 0,bottom
3

4 . The above system is
solved numerically using a finite-element method with COMSOL v5.3®. The average velocity across a unit cross-sectional area in the z-direction
represents the permeance k(~) of the structure.
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Fig. A1. Model domain solved for the bi-layered membrane structure, accounting for the transition of the flow above the membrane, into the membrane, via a
perforated sheet.

Appendix B. Viscous flow through a perforated sheet with different pore distributions.

Here, we consider the effect of pore arrangement (periodic or random) and size distribution on the permeance of a perforated sheet. The setup is
the same as for Appendix A, and we set = 100%bottom (or, equivalently, =r̃ 0bottom ), i.e., there are no solid objects in the bottom layer (bottom layer is
completely permeable). Here the porosity in the case of hexagonal pore arrangement on the infinitesimally thin top layer, = r̃top top3

2 , where

)r~ 0,top
1
2 . In the case of the random pore arrangement, the location of the circular holes are determined based on the Metropolis Hastings

algorithm [60]. We have chosen a sample space of 10× 10 units (xy plane) that can accommodate 100 (non-overlapping) pores (sample space). For
small pores (low porosity), when arranging a fixed number of pores in a given area, one has more possible locations – this leads to a higher standard
deviation of the resulting calculations made for each sampled arrangement. Conversely, when the pores are larger (larger porosity), the different
possible arrangements are not so distinctly and so the standard deviation becomes smaller, correspondingly (see Fig. A2 for an illustration).

Fig. A2. Schematic representation of pore locations, in this case for a perforated sheet, illustrating possible arrangements for a low porosity (small pore size), on the
top panel, and a high porosity (large pores) on the bottom panel. Moving away from a periodic arrangement (on left) to random pore locations, there is greater choice
in positioning for the small pore size, translating to a larger ‘sample size’.
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In order to obtain an estimate for the permeability, an average of 30 random samplings is taken corresponding to the specific porosity (or pore
size) values. The error bars indicate the standard deviation of the samplings. The above system is solved numerically using a finite-element method
with COMSOL v5.3®. As before, the average velocity across a unit cross section area in the z-direction represents the permeance k( ˜) in this case. The
analytical calculations in Fig. 3 for the case of a square and hexagonal pore configuration are based on [62]:

=Q
P

r
r

˜
˜

˜
3[1 ˜ ]

top

top

3

3

where is a constant dependent on the geometrical layout of the pores with = 1.9 for a square and = 2.3 for a hexagonal configuration [62]. The
permeance (k̃) is the fluid flow rate (Q̃) across a unit cell given in our computation. Here we have scaled the pressure such that =P̃ 1. For the
calculations of permeance for size distributions, we have chosen a square array arrangement of the pores in the top layer. The calculations for the
permeability are performed for a log-normal pore-radii distribution [63]

=Q
P

r˜
˜

˜
3

exp(3 )top avg,
3

2

where σ is the standard deviation of the natural logarithm of the mean pore radius r̃top avg, . The porosity of the top layer is determined from mean pore
radius, = r~top top avg,

2 .

Appendix C. Calculation of viscous flow through a ‘granular’ or ‘cellular’ structure

Here, we have only considered the impact of the depth porosity on the permeance. For this we have set = 100%top , in the setup described in
Appendix A. In order to understand the point of pore connectivity, we have considered =h̃ 5bottom , for five layers of spherical obstacles. In the case of
a granular configuration, the obstacles are impermeable and are placed in a cubic lattice where the radius of the spheres )r~ 0,bottom

1
2 , allowing

for overlap (of the spherical objects) to obtain the configuration of minimum possible porosity maintaining the fluid path connectivity. In the case of
a cellular configuration (inverse of the granular configuration) the spheres become the void space and the surrounding spaces are now the im-
permeable zones. We consider sphere radii in the range ( ,1

2
1
2 , which corresponds to a range of ×(1 , 1 100%bottom 6 in 3D. The minimum

radius of 1
2
is to ensure the pore (or fluid) connectivity pathway between spheres in the domain. In both the cellular and granular configurations we

have considered =h̃ 3bottom , for three layers of obstacles, and the x y, dimensions are also 3 units each (extending via a periodic condition thereafter)
having a total domain volume of 27 unit cells. The above system is solved numerically using a finite-element method with COMSOL v5.3®. The
average velocity across a unit cross-sectional area in the z-direction represents the permeance k( ˜).

Appendix D. Calculation of selectivity–permeance trade-off for porosity-graded membranes

For the solid curve in Fig. 5a, the permeability is evaluated considering Poiseuille's law with straight cylindrical pores =k
n r r r

µ h n r r r
( ) d

8 ( ) d
bottom

bottom
0

4

0
2

where n r( ) denotes the log-normal distribution. Here = 0.2 of the mean radius r( )avg and =hbottom
bottom

1µm. The selectivity is defined as the reciprocal of
=S r( ) (1 )[2 (1 ) ]exp( 0.715 )2 2 2 where = a

r and a is the radius of an example molecule (BSA) 3.65 nm and r is the pore radius. In Fig. 5a,

for the case of the pore-size distribution, the overall selectivity is =S
n r r r

S r n r r r
1 ( ) d

( ) ( ) d
0

4

0
4 [63]. In Fig. 5b, the solid curves represent the impact of the depth

variation of the porosity, = +z m z( )bottom 0 where 0 and m represents the mean porosity and the porosity gradient. Depending on the sign of m,
the porosity can increase in the flow direction >m( 0) or decrease <m( 0). To calculate the selectivity, the species transport (advection–diffusion)
equation is also solved:

=u c D c( )

where c is the concentration of the solute and D is the diffusivity. For the permeability, we use the Stokes equation to calculate the fluid velocity
field. The effect of spatial porosity variation across the depth of the filter medium can be studied using a computationally inexpensive homogenized
model for near-periodic systems of the microstructure domain [62]. Homogenization uses the method of multiple scales to determine a macroscale
description of a problem that captures the microscale structure through effective transport coefficients. Homogenization traditionally requires the
domain to be strictly periodic; however, the multiple-scales method can be extended to quasi-periodic structures where the microstructure is allowed
to vary gradually in the space domain [63]. This allows for the application of homogenization theory to the case of a porosity-graded membrane
microstructure. For the details of the calculation procedure, the reader is referred to the article [62]. We choose 0 such that falls within the
allowable range of 1 , 16 for three dimensions. We have chosen a different value of 0, which increments in steps of 0.02 from = 0.60 to

= 0.90 , for =m [ 0.5, 0,0.5]. Here we have chosen a cubic lattice and Pe (Peclet number)= 3.
The relative error difference in considering the microstructure to be locally periodic (when it is actually unstructured), can be calculated for a

random distribution of spherical obstacles, and comparing with the stochastic calculations for small spherical volume fraction derived from the
Fokker-Planck equations. The deviation is negligible for the case of periodic structures and is a maximum of 3% for the case of non-periodic
structures at 30% porosity [59]. Unlike the case of a network model [62], which keeps track of each pore, the homogenization model maps the
microstructural domain to the macroscopic properties incorporating the effects of fluid flow and particle adsorption on the structural parameter. A
two- or three-dimensional solid structure comprising of linearly varying (gradually) spherical inclusions can demonstrate the effect of change in
porosity along the depth of the membrane matrix.

Appendix E. Relative permeance in the case of diffusive transport

For the diffusive transport we solve Laplace's equation =C 02 . Here the concentration is scaled with respect to the feed and permeate streams
(subscripts f and p, respectively), as =C c c

c c
p

f p
. We define the permeance k( ˜ )s of a composite membrane as the flux achieved for a given concentration
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difference c̃ , derived from a flux balance (diffusive only)

=k Q A
c

˜ ˜ / ˜
˜

,s
s m

where Q̃s is the solute flux. The bottom of the layer contains circular holes (pores) having radius r̃bottom and the thickness of the top layer is h̃top. In this
case we do not have any support layer, so = 100%bottom . The boundary condition on =z̃ 0, is and at =z h˜ ˜top, =C 0 (inside the pore boundary,
shaded region) while =C 0 elsewhere. We also impose periodic boundary conditions on the associated xz and yz plane boundaries. The system is
solved using COMSOL v5.3 for different pore arrangements (square and hexagonal) in a unit cell and ratio of film thickness to support layer pore size

=H h r( ˜ /˜ )top bottom . In the case of a random pore arrangement, we chose a sample space of 10× 10 units (xy plane) that can accommodate 100 (non-
overlapping) pores (sample space). In order to estimate the permeability, an average of 50 random samplings are taken corresponding to the specific
porosity (or pore size) values. The location of the circular pores is decided based on the Metropolis-Hastings algorithm [60]. The error bars indicate
the standard deviation of the samplings.

Fig. A3. Schematic of the geometry representing the top layer of a composite, showing the interface with the underlying support and its surface pores (here shown in
a periodic, square array).

References

[1] A.K. Ghosh, E.M.V. Hoek, Impacts of support membrane structure and chemistry on
polyamide-polysulfone interfacial composite membranes, J. Membr. Sci. 336 (1–2)
(2009) 140–148, https://doi.org/10.1016/j.memsci.2009.03.024.

[2] F.A. Pacheco, I. Pinnau, M. Reinhard, J.O. Leckie, Characterization of isolated
polyamide thin films of RO and NF membranes using novel TEM techniques, J.
Membr. Sci. 358 (1–2) (2010) 51–59, https://doi.org/10.1016/j.memsci.2010.04.
032.

[3] A. Tiraferri, N.Y. Yip, W.A. Phillip, J.D. Schiffman, M. Elimelech, Relating perfor-
mance of thin-film composite forward osmosis membranes to support layer for-
mation and structure, J. Membr. Sci. 367 (1–2) (2011) 340–352, https://doi.org/
10.1016/j.memsci.2010.11.014.

[4] J. Hahn, J.I. Clodt, V. Filiz, V. Abetz, Protein separation performance of self-as-
sembled block copolymer membranes, RSC Adv. 4 (2014) 10252, https://doi.org/
10.1039/c3ra47306f.

[5] M. Mulder, Basic Principles of Membrane Technology, Kluwer Academic Publishers,
Dordrecht, Boston, London, 1992.

[6] H. Strathmann, Introduction to Membrane Science and Technology, Wiley, 2011.
[7] G.Z. Ramon, M.C. Wong, E.M. Hoek, Transport through composite membrane, part

1: is there an optimal support membrane? J. Membr. Sci. 415–416 (2012) 298–305.
[8] J. Wijmans, P. Hao, Influence of the porous support on diffusion in composite

membranes, J. Membr. Sci. 494 (2015) 78–85, https://doi.org/10.1016/j.memsci.
2015.07.047.

[9] L. Zhu, W. Jia, M. Kattula, K. Ponnuru, E.P. Furlani, H. Lin, Effect of porous supports
on the permeance of thin film composite membranes: Part I. Track-etched poly-
carbonate supports, J. Membr. Sci. (2015) 1–12.

[10] Z. Jiang, S. Karan, A.G. Livingston, Water transport through ultrathin polyamide
nanofilms used for reverse osmosis, Adv. Mater. 30 (15) (2018) 1–7, https://doi.
org/10.1002/adma.201705973.

[11] V. Abetz, Isoporous block copolymer membranes, Macromol. Rapid Commun. 36
(1) (2015) 10–22, https://doi.org/10.1002/marc.201400556.

[12] Y. Zhang, J. L. Sargent, B. W. Boudouris, W. A. Phillip, Nanoporous membranes
generated from self-assembled block polymer precursors: quo Vadis?, J. Appl.
Polym. Sci. 132 (21). doi:10.1002/app.41683.

[13] H.D. Tong, H.V. Jansen, V.J. Gadgil, C.G. Bostan, E. Berenschot, C.J. Van Rijn,
M. Elwenspoek, Silicon nitride nanosieve membrane, Nano Lett. 4 (2) (2004)
283–287, https://doi.org/10.1021/nl0350175.

[14] C.C. Striemer, T.R. Gaborski, J.L. McGrath, P.M. Fauchet, Charge- and size-based
separation of macromolecules using ultrathin silicon membranes, Nature 445

(7129) (2007) 749–753, https://doi.org/10.1038/nature05532.
[15] B.J. Hinds, N. Chopra, T. Rantell, R. Andrews, V. Gavalas, L.G. Bachas, Aligned

multiwalled carbon nanotube membranes, Science (New York, N.Y.) 303 (5654)
(2004) 62–65, https://doi.org/10.1126/science.1092048.

[16] H. Li, Z. Song, X. Zhang, Y. Huang, S. Li, Y. Mao, H.J. Ploehn, Y. Bao, M. Yu,
Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen
separation, Science 342 (6154) (2013) 95–98, https://doi.org/10.1126/science.
1236686 arXiv:1005.0853.

[17] C. Tang, Y. Zhao, R. Wang, C. Hélix-Nielsen, A. Fane, Desalination by biomimetic
aquaporin membranes: review of status and prospects, Desalination 308 (2013)
34–40, https://doi.org/10.1016/j.desal.2012.07.007.

[18] J. Lee, J.H. Jang, H.-R. Chae, S.H. Lee, C.-H. Lee, P.-K. Park, Y.-J. Won, I.-C. Kim, A
facile route to enhance the water flux of a thin-film composite reverse osmosis
membrane: incorporating thickness-controlled graphene oxide into a highly porous
support layer, J. Mater. Chem. 3 (44) (2015) 22053–22060, https://doi.org/10.
1039/C5TA04042F.

[19] M.E. Suk, N.R. Aluru, Modeling water flow through carbon nanotube membranes
with entrance/exit effects, Nanoscale Microscale Thermophys. Eng. 21 (4) (2017)
247–262, https://doi.org/10.1080/15567265.2017.1355949.

[20] M. Shi, G. Printsypar, O. Iliev, V.M. Calo, G.L. Amy, S.P. Nunes, Water flow pre-
diction for membranes using 3D simulations with detailed morphology, J. Membr.
Sci. 487 (2015) 19–31, https://doi.org/10.1016/j.memsci.2015.03.036.

[21] H.L. Weissberg, End correction for slow viscous flow through long tubes, Phys.
Fluids 5 (9) (1962) 1033–1036, https://doi.org/10.1063/1.1724469
arXiv:arXiv:1011.1669v3.

[22] R.A. Sampson, On Stokes' current function, Phil. Trans. Roy. Soc. Lond. 182 (1891)
449–518.

[23] L.G. Leal, Advanced Transport Phenomena: Fluid Mechanics and Convective
Transport Processes, Cambridge University Press, 2007.

[24] P. Aimar, M. Meireles, V. Sanchez, A contribution to the translation of retention
curves into pore size distributions for sieving membranes, J. Membr. Sci. 54 (3)
(1990) 321–338, https://doi.org/10.1016/S0376-7388(00)80618-3.

[25] A. Mehta, A.L. Zydney, Permeability and selectivity analysis for ultrafiltration
membranes, J. Membr. Sci. 249 (1–2) (2005) 245–249, https://doi.org/10.1016/j.
memsci.2004.09.040.

[26] D.M. Kanani, W.H. Fissell, S. Roy, A. Dubnisheva, A. Fleischman, A.L. Zydney,
Permeability-selectivity analysis for ultrafiltration: effect of pore geometry, J.
Membr. Sci. 349 (1–2) (2010) 405–410, https://doi.org/10.1016/j.memsci.2009.
12.003.

[27] K.H. Jensen, A.X.C.N. Valente, H.A. Stone, Flow rate through microfilters: influence
of the pore size distribution, hydrodynamic interactions, wall slip, and inertia, Phys.

S. Mondal, et al. Journal of Membrane Science 588 (2019) 117166

13

https://doi.org/10.1016/j.memsci.2009.03.024
https://doi.org/10.1016/j.memsci.2010.04.032
https://doi.org/10.1016/j.memsci.2010.04.032
https://doi.org/10.1016/j.memsci.2010.11.014
https://doi.org/10.1016/j.memsci.2010.11.014
https://doi.org/10.1039/c3ra47306f
https://doi.org/10.1039/c3ra47306f
http://refhub.elsevier.com/S0376-7388(18)33039-4/sref5
http://refhub.elsevier.com/S0376-7388(18)33039-4/sref5
http://refhub.elsevier.com/S0376-7388(18)33039-4/sref6
http://refhub.elsevier.com/S0376-7388(18)33039-4/sref7
http://refhub.elsevier.com/S0376-7388(18)33039-4/sref7
https://doi.org/10.1016/j.memsci.2015.07.047
https://doi.org/10.1016/j.memsci.2015.07.047
http://refhub.elsevier.com/S0376-7388(18)33039-4/sref9
http://refhub.elsevier.com/S0376-7388(18)33039-4/sref9
http://refhub.elsevier.com/S0376-7388(18)33039-4/sref9
https://doi.org/10.1002/adma.201705973
https://doi.org/10.1002/adma.201705973
https://doi.org/10.1002/marc.201400556
https://doi.org/10.1021/nl0350175
https://doi.org/10.1038/nature05532
https://doi.org/10.1126/science.1092048
https://doi.org/10.1126/science.1236686
https://doi.org/10.1126/science.1236686
https://doi.org/10.1016/j.desal.2012.07.007
https://doi.org/10.1039/C5TA04042F
https://doi.org/10.1039/C5TA04042F
https://doi.org/10.1080/15567265.2017.1355949
https://doi.org/10.1016/j.memsci.2015.03.036
https://doi.org/10.1063/1.1724469
https://doi.org/10.1063/1.1724469
http://refhub.elsevier.com/S0376-7388(18)33039-4/sref22
http://refhub.elsevier.com/S0376-7388(18)33039-4/sref22
http://refhub.elsevier.com/S0376-7388(18)33039-4/sref23
http://refhub.elsevier.com/S0376-7388(18)33039-4/sref23
https://doi.org/10.1016/S0376-7388(00)80618-3
https://doi.org/10.1016/j.memsci.2004.09.040
https://doi.org/10.1016/j.memsci.2004.09.040
https://doi.org/10.1016/j.memsci.2009.12.003
https://doi.org/10.1016/j.memsci.2009.12.003


Fluid. 26 (5) (2014) 052004, https://doi.org/10.1063/1.4876937.
[28] A. L. Zydney, P. Aimar, M. Meireles, J. M. Pimbley, G. Belfort, Use of the log-normal

probability density function to analyze membrane pore size distributions: func-
tional forms and discrepancies, J. Membr. Sci.doi:10.1016/0376-7388(94)80090-1.

[29] T.H. Young, L.P. Cheng, D.J. Lin, L. Fane, W.Y. Chuang, Mechanisms of PVDF
membrane formation by immersion-precipitation in soft (1-octanol) and harsh
(water) nonsolvents, Polymer 40 (19) (1999) 5315–5323.

[30] V. Abetz, Isoporous block copolymer membranes, Macromol. Rapid Commun. 36
(1) (2015) 10–22, https://doi.org/10.1002/marc.201400556.

[31] C.C. Ho, A.L. Zydney, Effect of membrane morphology on the initial rate of protein
fouling during microfiltration, J. Membr. Sci. 155 (2) (1999) 261–275, https://doi.
org/10.1016/S0376-7388(98)00324-X.

[32] W.M. Deen, Hindered transport of large molecules in liquid-filled pores, AIChE J. 33
(9) (1987) 1409–1425, https://doi.org/10.1002/aic.690330902.

[33] P. Dechadilok, W.M. Deen, Hindrance factors for diffusion and convection in pores,
Ind. Eng. Chem. Res. 45 (21) (2006) 6953–6959, https://doi.org/10.1021/
ie051387n.

[34] J.D. Ferry, Statistic evaluation of sieve constants in ultrafiltration, J. Gen. Physiol.
20 (1936) 95–104, https://doi.org/10.1085/jgp.20.1.95.

[35] M. P. Dalwadi, I. M. Griffiths, M. Bruna, Understanding how porosity gradients can
make a better filter using homogenization theory, Proc. Royal Soc. London A: Math.
Phys. Eng. Sci. 471 (2182). doi:10.1098/rspa.2015.0464.

[36] H.K. Lonsdale, Transport properties of cellulose acetate osmotic membranes, U.
Merten and R. L. Riley. J. Appl. Polymer Sci. 9 (4) (1965) 1341–1362.

[37] J.G. Wijmans, R.W. Baker, The solution-diffusion model: a review, J. Membr. Sci.
107 (1–2) (1995) 1–21, https://doi.org/10.1016/0376-7388(95)00102-I.

[38] H.K. Lonsdale, R.L. Riley, C.R. Lyons, D.P. Carosella, Transport in Composite
Reverse Osmosis Membranes, Springer US, Boston, MA, 1971, pp. 101–122, https://
doi.org/10.1007/978-1-4684-1911-5_6.

[39] A.M.J. Davis, C.R. Ethier, Transport through materials bounded by porous surfaces,
Chem. Eng. Sci. 48 (9) (1993) 1655–1663.

[40] J.L. Lopez, S.L. Matson, J. Marchese, J.A. Quinn, Diffusion through composite
membranes: a two-dimensional analysis, J. Membr. Sci. 27 (3) (1986) 301–325.

[41] U. Beuscher, C.H. Gooding, The influence of the porous support layer of composite
membranes on the separation of binary gas mixtures, J. Membr. Sci. 152 (1) (1999)
99–116.

[42] G.Z. Ramon, E.M.V. Hoek, Transport through composite membranes , part 2 : im-
pacts of roughness on permeability and fouling, J. Membr. Sci. 425–426 (2013)
141–148.

[43] M.F. Jimenez-Solomon, P. Gorgojo, M. Munoz-Ibanez, A.G. Livingston, Beneath the
surface: influence of supports on thin film composite membranes by interfacial
polymerization for organic solvent nanofiltration, J. Membr. Sci. 448 (2013)
102–113, https://doi.org/10.1016/j.memsci.2013.06.030.

[44] M. Bruna, S.J. Chapman, G.Z. Ramon, The effective flux through a thin-film com-
posite membrane, EPL (Europhys. Lett.) 110 (4) (2015) 40005, https://doi.org/10.
1209/0295-5075/110/40005.

[45] M. Kattula, K. Ponnuru, L. Zhu, W. Jia, H. Lin, E.P. Furlani, Designing ultrathin film
composite membranes: the impact of a gutter layer, Sci. Rep. 5 (2015) 15016,
https://doi.org/10.1038/srep15016.

[46] S. Manickam, G. Z. Ramon, J. McCutcheon, Modeling the effect of film-pore coupled
transport on composite forward osmosis membrane performance, J. Membr. Sci.
523. doi:10.1016/j.memsci.2016.09.043.

[47] A. Ghadimi, S. Norouzbahari, H. Lin, H. Rabiee, B. Sadatnia, Geometric restriction
of microporous supports on gas permeance efficiency of thin film composite
membranes, J. Membr. Sci. 563 (2018) 643–654, https://doi.org/10.1016/j.

memsci.2018.06.025.
[48] L. Lin, R. Lopez, G.Z. Ramon, O. Coronell, Investigating the void structure of the

polyamide active layers of thin-film composite membranes, J. Membr. Sci. 497
(2016) 365–376, https://doi.org/10.1016/j.memsci.2015.09.020.

[49] F. Pacheco, R. Sougrat, M. Reinhard, J.O. Leckie, I. Pinnau, 3D visualization of the
internal nanostructure of polyamide thin films in RO membranes, J. Membr. Sci.
501 (2015) 33–44, https://doi.org/10.1016/j.memsci.2015.10.061.

[50] H. Yan, X. Miao, J. Xu, G. Pan, Y. Zhang, Y. Shi, M. Guo, Y. Liu, The porous structure
of the fully-aromatic polyamide film in reverse osmosis membranes, J. Membr. Sci.
475 (2015) 504–510, https://doi.org/10.1016/j.memsci.2014.10.052.

[51] M.M. Kłosowski, C.M. McGilvery, Y. Li, P. Abellan, Q. Ramasse, J.T. Cabral,
A.G. Livingston, A.E. Porter, Micro-to nano-scale characterisation of polyamide
structures of the SW30HR RO membrane using advanced electron microscopy and
stain tracers, J. Membr. Sci. 520 (2016) 465–476.

[52] X. Lu, S. Nejati, Y. Choo, C.O. Osuji, J. Ma, M. Elimelech, Elements provide a clue:
nanoscale characterization of thin-film composite polyamide membranes, ACS
Appl. Mater. Interfaces 7 (31) (2015) 16917–16922, https://doi.org/10.1021/
acsami.5b05478.

[53] J. Xu, H. Yan, Y. Zhang, G. Pan, Y. Liu, The morphology of fully-aromatic polyamide
separation layer and its relationship with separation performance of TFC mem-
branes, J. Membr. Sci. 541 (2017) 174–188, https://doi.org/10.1016/j.memsci.
2017.06.057.

[54] Y. Li, M.M. Kłosowski, C.M. McGilvery, A.E. Porter, A.G. Livingston, J.T. Cabral,
Probing flow activity in polyamide layer of reverse osmosis membrane with na-
noparticle tracers, J. Membr. Sci. 534 (April) (2017) 9–17, https://doi.org/10.
1016/j.memsci.2017.04.005.

[55] M.C. Wong, L. Lin, O. Coronell, E.M. Hoek, G.Z. Ramon, Impact of liquid-filled voids
within the active layer on transport through thin-film composite membranes, J.
Membr. Sci. 500 (2016) 124–135, https://doi.org/10.1016/j.memsci.2015.11.033.

[56] L. Lin, T.M. Weigand, M.W. Farthing, P. Jutaporn, C.T. Miller, O. Coronell, Relative
importance of geometrical and intrinsic water transport properties of active layers
in the water permeability of polyamide thin-film composite membranes, J. Membr.
Sci. 564 (2018) 935–944.

[57] S. Karan, Z. Jiang, A.G. Livingston, Sub10 nm polyamide nanofilms with ultrafast
solvent transport for molecular separation, Science 348 (6241) (2015) 1347–1351,
https://doi.org/10.1126/science.aaa5058.

[58] Z. Tan, S. Chen, X. Peng, L. Zhang, C. Gao, Polyamide membranes with nanoscale
Turing structures for water purification, Science 360 (6388) (2018) 518–521,
https://doi.org/10.1126/science.aar6308.

[59] M. Bruna, S.J. Chapman, Diffusion in spatially varying porous media, SIAM J. Appl.
Math. 75 (2015) 1648–1674.

[60] S. Chib, E. Greenberg, Understanding the metropolis-hastings algorithm, Am.
Statistician 49 (1995) 327–335.

[62] M.P. Dalwadi, I.M. Griffiths, M. Bruna, Understanding how porosity gradients can
make a better filter using homogenization theory, Proc. Roy. Soc. London A: Math.
Phys. Eng. Sci. 471 (2015) 20150464.

[63] G. Richardson, S.J. Chapman, Derivation of the bidomain equations for a beating
heart with a general microstructure, SIAM J. Appl. Math. 71 (3) (2011) 657–675.

Further reading

[61] I.M. Griffiths, A. Kumar, P.S. Stewart, A combined network model for membrane
fouling, J. Colloid Interface Sci. 432 (2014) 10–18.

S. Mondal, et al. Journal of Membrane Science 588 (2019) 117166

14

https://doi.org/10.1063/1.4876937
http://refhub.elsevier.com/S0376-7388(18)33039-4/sref29
http://refhub.elsevier.com/S0376-7388(18)33039-4/sref29
http://refhub.elsevier.com/S0376-7388(18)33039-4/sref29
https://doi.org/10.1002/marc.201400556
https://doi.org/10.1016/S0376-7388(98)00324-X
https://doi.org/10.1016/S0376-7388(98)00324-X
https://doi.org/10.1002/aic.690330902
https://doi.org/10.1021/ie051387n
https://doi.org/10.1021/ie051387n
https://doi.org/10.1085/jgp.20.1.95
http://refhub.elsevier.com/S0376-7388(18)33039-4/sref36
http://refhub.elsevier.com/S0376-7388(18)33039-4/sref36
https://doi.org/10.1016/0376-7388(95)00102-I
https://doi.org/10.1007/978-1-4684-1911-5_6
https://doi.org/10.1007/978-1-4684-1911-5_6
http://refhub.elsevier.com/S0376-7388(18)33039-4/sref39
http://refhub.elsevier.com/S0376-7388(18)33039-4/sref39
http://refhub.elsevier.com/S0376-7388(18)33039-4/sref40
http://refhub.elsevier.com/S0376-7388(18)33039-4/sref40
http://refhub.elsevier.com/S0376-7388(18)33039-4/sref41
http://refhub.elsevier.com/S0376-7388(18)33039-4/sref41
http://refhub.elsevier.com/S0376-7388(18)33039-4/sref41
http://refhub.elsevier.com/S0376-7388(18)33039-4/sref42
http://refhub.elsevier.com/S0376-7388(18)33039-4/sref42
http://refhub.elsevier.com/S0376-7388(18)33039-4/sref42
https://doi.org/10.1016/j.memsci.2013.06.030
https://doi.org/10.1209/0295-5075/110/40005
https://doi.org/10.1209/0295-5075/110/40005
https://doi.org/10.1038/srep15016
https://doi.org/10.1016/j.memsci.2018.06.025
https://doi.org/10.1016/j.memsci.2018.06.025
https://doi.org/10.1016/j.memsci.2015.09.020
https://doi.org/10.1016/j.memsci.2015.10.061
https://doi.org/10.1016/j.memsci.2014.10.052
http://refhub.elsevier.com/S0376-7388(18)33039-4/sref51
http://refhub.elsevier.com/S0376-7388(18)33039-4/sref51
http://refhub.elsevier.com/S0376-7388(18)33039-4/sref51
http://refhub.elsevier.com/S0376-7388(18)33039-4/sref51
https://doi.org/10.1021/acsami.5b05478
https://doi.org/10.1021/acsami.5b05478
https://doi.org/10.1016/j.memsci.2017.06.057
https://doi.org/10.1016/j.memsci.2017.06.057
https://doi.org/10.1016/j.memsci.2017.04.005
https://doi.org/10.1016/j.memsci.2017.04.005
https://doi.org/10.1016/j.memsci.2015.11.033
http://refhub.elsevier.com/S0376-7388(18)33039-4/sref56
http://refhub.elsevier.com/S0376-7388(18)33039-4/sref56
http://refhub.elsevier.com/S0376-7388(18)33039-4/sref56
http://refhub.elsevier.com/S0376-7388(18)33039-4/sref56
https://doi.org/10.1126/science.aaa5058
https://doi.org/10.1126/science.aar6308
http://refhub.elsevier.com/S0376-7388(18)33039-4/sref59
http://refhub.elsevier.com/S0376-7388(18)33039-4/sref59
http://refhub.elsevier.com/S0376-7388(18)33039-4/sref60
http://refhub.elsevier.com/S0376-7388(18)33039-4/sref60
http://refhub.elsevier.com/S0376-7388(18)33039-4/sref62
http://refhub.elsevier.com/S0376-7388(18)33039-4/sref62
http://refhub.elsevier.com/S0376-7388(18)33039-4/sref62
http://refhub.elsevier.com/S0376-7388(18)33039-4/sref63
http://refhub.elsevier.com/S0376-7388(18)33039-4/sref63
http://refhub.elsevier.com/S0376-7388(18)33039-4/sref61
http://refhub.elsevier.com/S0376-7388(18)33039-4/sref61

	Forefronts in structure–performance models of separation membranes
	Introduction
	Porous membranes
	Surface versus depth effect
	The effect of pore size and location distributions in the top layer
	‘Cellular’ versus ‘granular’ structures
	Selectivity of porous structures

	Composite membranes
	Effect of the support on transport through composites
	Effect of ‘voids’ in the thin film
	A note on selectivity and rejection in composite membranes

	Conclusions
	Acknowledgment
	Nomenclature
	Calculation of viscous flow through two-layered membrane.
	Viscous flow through a perforated sheet with different pore distributions.
	Calculation of viscous flow through a ‘granular’ or ‘cellular’ structure
	Calculation of selectivity–permeance trade-off for porosity-graded membranes
	Relative permeance in the case of diffusive transport
	References
	Further reading
	mk:H2_21





