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We develop a model for predicting the flow resulting from the relaxation of
pre-strained, fluid-filled, elastic network structures. This model may be useful for
understanding relaxation processes in various systems, e.g. deformable microfluidic
systems or by-products from hydraulic fracturing operations. The analysis is aimed
at elucidating features that may provide insight on the rate of fluid drainage from
fracturing operations. The model structure is a bifurcating network made of fractures
with uniform length and elastic modulus, which allows for general self-similar
branching and variation in fracture length and rigidity between fractures along the
flow path. A late-time t−1/3 power law is attained and the physical behaviour can
be classified into four distinct regimes that describe the late-time dynamics based
on the location of the bulk of the fluid volume (which shifts away from the outlet
as branching is increased) and pressure drop (which shifts away from the outlet as
rigidity is increased upstream) along the network. We develop asymptotic solutions
for each of the regimes, predicting the late-time flux and evolution of the pressure
distribution. The effects of the various parameters on the outlet flux and the network’s
drainage efficiency are investigated and show that added branching and a decrease in
rigidity upstream tend to increase drainage time.

Key words: lubrication theory, porous media

1. Introduction

Hydraulic fracturing is widely used for the production of oil and gas from shale
formations in many parts of the world (Holditch 2007). The process utilises a viscous
fluid, usually water, mixed with various additives and injected under high pressure
in order to induce deformation and propagate conductive fractures, through which

† Email address for correspondence: ramong@technion.ac.il
‡ These two authors contributed equally.
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the surface area for fluid–shale contact is significantly increased and hydrocarbon
extraction is facilitated. Once the well is depressurised, the flow direction reverses
and the fracturing fluid and the hydrocarbons come out through the well-head. The
flow generated during the relaxation of the fractures typically results in fluid waste
that can amount to a significant fraction of the initially injected volume, in some cases
flowing out of the well for decades following the initial fracturing operation (King
2010). This wastewater represents a growing threat to the environment, particularly
water resources, which has prompted recent interest in developing fundamental
understanding of the dynamics of this so-called ‘flowback’ problem.

Several studies have already accounted for the flow out of a hydraulically fractured
elastic or poroelastic medium. Patzek, Male & Marder (2013) compared the late-time
(>3 months) gas flow, modelled via a nonlinear diffusion equation, to field data from
the Barnett shale, the oldest shale basin in the USA. Their analysis showed good
agreement with the production data, demonstrating a scaling curve that declines like
a −1/2 power law in time, followed by an exponential decay. Additionally, similar
studies by Marck & Detournay (2013) and Marck, Savitski & Detournay (2015)
investigating the fluid release from a poroelastic layer bounded by an impermeable
elastic space have also shown power-law asymptotic behaviours of pressure and
displacement at various time scales.

Before we consider our model for backflow, we discuss briefly the form of some
crack networks. Chau, Bažant & Su (2016) performed a numerical investigation of
the growth of branched three-dimensional hydraulic crack systems. They concluded
that the resulting network is expected to consist of roughly orthogonal vertical cracks
and that V-shaped branching is not a realistic hypothesis for static crack growth. The
present work makes use of a simple model to envision the complex nature of such a
network and hence neglects branching angles and junction geometry, which is partially
justified due to the low-Reynolds-number flow. Thus, the model is considered to be
consistent with a variety of existing ideas on the geometric nature of the network.
Another recent study by Santillán, Mosquera & Cueto-Felgueroso (2017) has analysed
the influence of the spatial variability of mechanical properties on the complexity and
spatial structure of the trajectories (i.e. the deviation from the straight deterministic
path) of fluid-driven fractures in the toughness-dominated regime. They found that
most deviations can be characterised using normal distributions and that the absolute
maximum deviations of each fracture trajectory follows log-normal distributions
whose mean and standard deviation increase with the variability of the properties.
Furthermore, heterogeneity in the mechanical properties of the fracturing fluids can
significantly influence the complexity of the fluid-driven fracture trajectories.

While the above-mentioned studies have focused on the fracturing stage, the
relaxation of a fluid-filled crack when the pressure, responsible for crack opening
or filling, is released has only recently been studied experimentally in a controlled
manner (Lai et al. 2016). The fractures were shown to relax without changing their
length and the late-time dependence of the aperture closure was shown to tend to a
−1/3 power law, which the authors demonstrated using scaling arguments, coupling
fluid flow in a narrow gap with elastic relaxation of the surrounding matrix. This
problem was theoretically treated by Dana et al. (2018), where, firstly, a single
crack was modelled as two parallel rigid plates of a constant length bound by a
pre-strained elastic foundation, and secondly, an extension was made to consider a
model network comprising n generations of repeatedly bifurcating similar channels
branching from a single root. Late-time solutions for the aperture and pressure
distributions were shown also to tend to a −1/3 power law in time, and a solution
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for the late-time maximal pressure in the network was obtained. Although the assumed
network structure provided insight on the dynamics of backflow, different branching
structures or matrix properties may change the shape of the pressure and volume
distributions in the system. Certainly, ‘real’ fracture networks possess far more
complex attributes. Thus, a more accurate representation of reality might include, for
example, a non-parallel plate geometry, a more elaborate elastic model (e.g. including
spring interactions or a poroelastic foundation), irregular variability in distributions of
branching and length, interconnectivity between generations, etc.

The various properties (i.e. length, aperture, etc.) of fracture networks, despite
extensive study in the past decades, are still subject to a high degree of uncertainty
(Bonnet et al. 2001). Clearly, there is much difficulty in analysing three-dimensional
fractures in situ. Therefore, most studies rely on the extrapolation of data from
outcrops, core samples and various geophysical techniques. In a review of such studies,
Bonnet et al. (2001) present a synthesis of data for various fracture properties in
natural systems. Length distributions appeared mostly to obey power-law distributions
although some exponential and log-normal (mostly in mature or high-density systems)
distributions are also possible. Furthermore, according to Bonnet et al. (2001), several
studies claim that fracture networks exhibit fractal properties, for example in the
fracture density (i.e. number of fractures per unit area or volume) or the geometric
dimensions. Fractal dimensions, they state, usually do not fully characterise the
structural pattern of these networks, but can be useful since they provide a better
description of the data than other alternatives.

The model by Dana et al. (2018) represents a complex crack network, which is the
subject of very limited observations in the current literature, using linear elasticity and
two-dimensional geometry. We therefore set out to account for some of the various
issues that may occur in more realistic systems. In this paper, we will focus on
the geometrical branching and length distribution because they are the most natural
evolution of our original model. Length distributions must be accounted for in order
to imitate a real network that is likely to show a variability in fracture lengths after it
finishes to propagate. We consider branching as a relevant parameter because already
today many industrial technologies are seeking structures that may result in more
robust and efficient production from fracture networks (Jinzhou et al. 2018). We
further note that the model presented here may be relevant to other situations that
involve the deformation, relaxation or depressurisation of rigid or compliant materials
such as, for example, in common microfluidic devices (Weibel et al. 2007) or soft
robotics (Matia & Gat 2015).

Herein, we generalise the model proposed by Dana et al. (2018) to allow variability
in both the geometry and the manner in which the elasticity of the surrounding matrix
is represented (figure 1). Since there is great variance and uncertainty regarding the
structure of fracture networks, we have used a simple length variation in the form of a
geometric sequence that provides insight into the dynamics of such a system, though
it may not be quantitatively representative of real systems. We assume that the created
fracture network relaxes, driven by a linear elastic response to the initial strained state,
while retaining a constant fracture length. This relaxation process is resisted by the
pressure developed in the viscous incompressible flow within the narrowing apertures.

In order to keep the model simple, we neglect the effects of the precise geometry
at the network junctions, as such features only modify the effective resistance of the
channel. Furthermore, the model does not account for the effects of wall permeability,
surface roughness, multi-phase flow, proppants and other possible extensions (see Dana
et al. (2018) for a more detailed discussion).
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FIGURE 1. Schematic of a model network with self-similar variation determined by three
parameters: the length factor φ∗, the branching factor α∗, and the elasticity factor η∗. Each
generation, indexed by i, contains α∗i identical individual liquid-filled channels, which are
modelled as two rigid plates being squeezed together by the elastic medium. The details of
the flow near the junctions are not modelled. Although the schematic shows the channels
in each generation grouped together, in reality the channels are spread out and have any
orientation. In the example shown, φ∗ < 1 and α∗ = 2, but any positive real values of φ∗,
α∗ and η∗ are possible.

The paper is organised as follows. In § 2 we formulate a self-similar model for
the spatially varying properties, namely length, matrix elasticity and number of
channels in a generation. In § 3 we present numerical results revealing different
dynamic regimes, followed by the derivation of late-time asymptotic solutions for the
different cases and a regime plot of qualitatively different asymptotic behaviours. In
§ 4, numerical solutions are then compared with the asymptotic analyses. In § 5, we
analyse the effects of the different parameters on the network drainage time. Finally,
in § 6 we make some concluding remarks and discuss the implications for industrial
processes.

2. Self-similar parametrisation of a fracture network
We consider a network as a hierarchical structure (see figure 1) originating from

a single channel, which we refer to as the outlet or ‘root’ channel with the outlet
located at x∗ = 0. The outlet is the furthest downstream point and the pressure there
(for the study of backflow) is assumed to be zero. Upstream, the root channel splits
into a number of identical channels that in turn regularly split upstream in a model
geometric progression. The complete set of channels at the same distance (or number
of nodes) from the root is referred to as a generation. The network is assumed to have
n generations, which we index using i, with i = 0 signifying the root and i = n − 1
signifying the ‘tip’ generation, as shown in figure 1. The tip end of the network is
the furthest upstream point(s) in the network and flow cannot occur through it. For
simplicity, this work does not consider effects resulting from the geometry of the
junctions, for example the branching angles. Since we assume that the fluid flows
through long fractures separated by short junctions, the effect of the junction geometry
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will, due to the low Reynolds number, manifest itself mainly as a small change in the
overall pressure drop (Dana et al. 2018). The structure of the network is given using
a set of parameters (φ∗, α∗, η∗) that provide each generation with its own properties
related to the previous generation by constant factors.

The branching factor α∗ > 0 is the number of branches into which each channel
splits, so that the number of channels in the ith generation is α∗i (where i ranges
from 0 to n − 1). Similarly, we assume that the length of each channel in the ith
generation is Lφ∗i, where the length factor φ∗ > 0. Finally, the elastic stresses in the
medium are assumed to result in a linearly elastic law (see (2.2b) below) for each
channel, with effective elastic modulus (per unit length) Êη∗i in the ith generation,
where the elasticity factor η∗ > 0. For example, for a finite elastic layer, Êη∗i would
be its Young’s modulus divided by its original (pre-strained) thickness. The elasticity
parameter is such that, when the pressure is uniform, it satisfies p∗i = η

∗iÊh∗i , where p∗i
and h∗i are the pressure and aperture of the ith fracture. (This set-up is a generalisation
of the case (φ∗, α∗, η∗)= (1, 2, 1), i.e. a bifurcating system with uniform elasticity and
fracture lengths, studied by Dana et al. (2018).)

The simple elasticity law can represent any linearly elastic foundation in which
there is no interaction between the different channels. Values for η∗ 6= 1 represent
the medium becoming more (η∗ > 1) or less (η∗ < 1) rigid as the network branches.
Various foundations can be emulated by choosing a suitable η∗, including a Winkler
foundation (in which case the elastic modulus is the foundation modulus) or a spring
array (in which case the elastic modulus is the product of the spring stiffness and the
spring density). The factor η∗ captures variations in the effective elasticity along the
flow path, which include spatial variations in the elasticity of the foundation but also
any simple dependence of the elastic behaviour on the channel lengths (in which case
η∗ would include a dependence on φ∗, the length factor) or on the number of channels
in the generation due to interaction between them (in which case η∗ would include a
dependence on α∗, the dimensional branching factor). Similarly, the branching factor
α∗ captures the change in the number of channels due to branching, and can also be
modified to include the effects of the channel widths (in the third dimension) varying
between generations. (This is possible since the model neglects the effects of the
junctions on the flow, which results in α∗ only appearing in the governing equations
below as a flux multiplier in (2.3d).) Hence, although the basic bifurcating set-up in
figure 1 implies that α∗ is an integer and equal to or greater than 2, in fact other
positive values of α∗ are also realistic, and in general we consider any positive values
of φ∗, α∗ and η∗.

2.1. Governing equations
The problem formulation remains similar to that in Dana et al. (2018), adjusted by the
appropriate parameters. Hence, we give only a brief description of the model here. We
define the position variable x∗ to be the distance from the outlet measured along the
flow path (see figure 1), and denote the locations of the junctions by

x∗0 = 0, x∗i+1 = x∗i + Lφ∗i
. (2.1a,b)

For simplicity, the parallel plates bounding each channel are considered to be rigid
and impermeable and therefore the aperture, h∗i (t), is solely a function of time. The
governing equations for each fracture are then given by the lubrication equation

12µ
h∗i (t∗)3

dh∗i (t
∗)

dt∗
=
∂2p∗i (x

∗, t∗)
∂x∗2 (i= 0, 1, . . . , n− 1) (2.2a)
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and the force balance∫ x∗i+1

x∗i

p∗i (x
∗, t∗) dx∗ = Êη∗iLφ∗ih∗i (t

∗) (i= 0, 1, . . . , n− 1). (2.2b)

The problem now consists of 2n equations with 2n unknowns, h∗i and p∗i . Since each
lubrication equation requires an initial condition and two boundary conditions, we
require a total of n initial conditions and 2n boundary conditions in order to complete
the problem statement. These are given by

h∗i (0) =
p∗

Êη∗i
(i= 0, 1, . . . , n− 1), (2.3a)

p∗0(0, t∗) = 0, (2.3b)
p∗i (x

∗

i+1, t∗) = p∗i+1(x
∗

i+1, t∗) (i= 0, 1, . . . , n− 2), (2.3c)

α∗
ih∗i

3 ∂p∗i
∂x∗

∣∣∣∣
(x∗i+1,t

∗)

= α∗
i+1h∗3i+1

∂p∗i+1

∂x∗

∣∣∣∣
(x∗i+1,t

∗)

(i= 0, 1, . . . , n− 2), (2.3d)

∂p∗n−1

∂x∗

∣∣∣∣
(x∗n,t∗)

= 0. (2.3e)

The initial condition (2.3a) corresponds to a uniform initial pressure p∗, while (2.3c)
and (2.3d) represent, respectively, continuity of pressure and fluid flux at each node.
Finally, (2.3e) corresponds to no flux at the tip end.

2.2. Non-dimensionalisation
Defining a stretched local coordinate x by

x= (x∗ − xi)/(Lφ∗
i
) (0 6 x 6 1), (2.4)

we non-dimensionalise the system using

hi = h∗i

/(
p∗φ∗i

Ê

)
, pi = p∗i /p

∗ and t= t∗
/(

12µÊ2L2

p∗3

)
, (2.5a−c)

as well as length-compensated elasticity and branching factors,

η= η∗φ∗, α = α∗φ∗
2
. (2.6a,b)

The resulting dimensionless equations are then

1
h3

i (t)
dhi(t)

dt
=
∂2pi(x, t)
∂x2

,

∫ 1

0
pi(x, t) dx= ηihi(t) (i= 0, 1, . . . , n− 1), (2.7a,b)

with dimensionless initial and boundary conditions:

hi(0) = η−i (i= 0, 1, . . . , n− 1), (2.8a)
p0(0, t) = 0, (2.8b)
pi(1, t) = pi+1(0, t) (i= 0, 1, . . . , n− 2), (2.8c)

αih3
i
∂pi

∂x

∣∣∣∣
(1,t)

= αi+1h3
i+1

∂pi+1

∂x

∣∣∣∣
(0,t)

(i= 0, 1, . . . , n− 2), (2.8d)

∂pn−1

∂x

∣∣∣∣
(1,t)

= 0. (2.8e)

Henceforth, we will omit specifying the range of i when it is clear from the context.
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2.2.1. Non-dimensional structure interpretation
An important property of the non-dimensionalisation (2.4)–(2.6) is that it effectively

eliminates the length factor φ∗ from the governing equations, resulting in governing
equations (2.7) and (2.8) that essentially describe a network with (φ∗, α∗, η∗) =
(1, α, η). Physically, this shows that, in our model, a network with spatially varying
channel lengths (φ∗ 6= 1) is dynamically equivalent to a network with spatially uniform
channel lengths (φ∗ = 1), albeit with modified branching and elasticity factors.

We illustrate this equivalence for the non-dimensional parameter set (α, η) =
(2, 1/2), which we will study in more detail in § 3. This set corresponds, for
example, to a network with spatially uniform channel length, each channel splitting
into two, and effective elasticity decreasing by a factor of 2 for each generation,
i.e. (φ∗, α∗, η∗) = (1, 2, 1/2). It also corresponds to a network with, for example,
(φ∗, α∗, η∗)= (1/2, 8, 1), i.e. with decreasing channel lengths, more extreme branching
and uniform elasticity. Another possibility is (φ∗, α∗, η∗) = (2, 1/2, 1/4), where the
channel length increases (φ∗ > 1) and elasticity decreases (η∗ < 1), and α∗ < 1 is due
to the channel width decreasing faster than the network branches.

Throughout the paper we choose, without loss of generality, to discuss the system
using φ∗ = 1, meaning that all the channels in the system are of the same length,
α = α∗ and η= η∗.

2.3. Reduction to a system of ordinary differential equations
Since we assume that the apertures, hi(t), have no spatial dependence, we can
transform the current form of the governing equations into a ‘discretised’ system of
ordinary differential equations (ODEs). We stress that this discretisation is an exact
reduction of the model problem and not an approximation of a continuous system.

The pressure field pi(x, t) is expressed using the time-dependent values at the
endpoints of the ith channel (0 6 x 6 1), defined by

p̂i = pi(0, t) and p̂i+1 = pi(1, t), (2.9a,b)

and the respective time-dependent fluxes by

q̂i = α
ih3

i
∂pi

∂x

∣∣∣∣
(0,t)

and q̂i+1 = α
ih3

i
∂pi

∂x

∣∣∣∣
(1,t)

. (2.10a,b)

The continuity conditions on pressure (2.8c) and flux (2.8d) make these definitions
consistent between generations.

Integrating the lubrication equation (2.7) in x subject to (2.9), we find that the
pressure fields within each generation are given by

pi = p̂i(1− x)+ p̂i+1x−
ḣi

h3
i

x(1− x)
2

, (2.11)

where the dot operator signifies the time derivative. Substituting the pressure field
(2.11) into the force balance (2.7b), we obtain

p̂i + p̂i+1

2
−

ḣi

12h3
i
= ηihi, (2.12a)

where on the left-hand side the average pressure has been simplified to two terms.
The first term, which is the average of the endpoint pressures, is due to the first two,
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linear, terms in the pressure field (2.11). The second term in (2.12a) is due to the
last, nonlinear, term in the pressure field (2.11), which is the squeezing effect, i.e. the
contribution of the relaxing elastic matrix to the pressure due to the squeezing of the
fluid. Substituting (2.11) into (2.10), we derive the full discretised system of ODEs

q̂i+1 − q̂i = αiḣi, (2.12b)
q̂i+1 + q̂i

2
= αih3

i (p̂i+1 − p̂i), (2.12c)

with initial and boundary conditions

hi(0)= η−i, p̂0 = 0 and q̂n = 0. (2.13a−c)

Equation (2.12b) states that the rate of change of the local volume, αihi, in the ith
generation and the difference between the inward and outward fluxes must balance
and that the local outlet flux is the rate of change of the total upstream volume,

q̂i =−

n−1∑
j=i

αjḣj. (2.14)

Equation (2.12c) states that the average flux through each channel is proportional to
the pressure drop across it.

The system (2.12) is composed of n time-dependent unknowns hi (0 6 i 6 n − 1),
2n + 2 time-dependent unknowns p̂i, q̂i (0 6 i 6 n) and 3n equations together with
two boundary conditions, (2.13b,c). Since there are time derivatives only for hi, only
n initial conditions are needed. The system can be evolved numerically by solving a
tridiagonal matrix equation at every time step (see § A.1). The numerical results are
obtained using MATLAB’s subroutine ‘ODE23s’.

2.4. Late-time power-law behaviour
Dana et al. (2018) showed that, for a network with uniform properties, the late-time
dependence of all the network segments is t−1/3. We state that the same late-time
scaling applies here and therefore we eliminate time dependence from our equations
in order to study the late-time asymptotic behaviour. New similarity variables, Pi(X)
and Hi, are defined by

pi(x, t)= t−1/3Pi(X), hi(t)= t−1/3Hi, (2.15a,b)

and a set of discrete similarity variables, P̂i and Q̂i, by

p̂i(t)= t−1/3P̂i, q̂i(t)= t−4/3Q̂i, (2.15c,d)

where the hat indicates the value of the continuous function of the ith generation at
the point x= 0 (Hi does not depend on x even though it is not decorated with a hat).

The resulting similarity form of the governing equations (2.12) is then

Q̂i+1 − Q̂i = −α
i Hi

3
, (2.16a)
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Q̂i+1 + Q̂i

2
= αiH3

i (P̂i+1 − P̂i), (2.16b)

P̂i + P̂i+1

2
+

1
36H2

i
= ηiHi, (2.16c)

with boundary conditions
P̂0 = 0, Q̂n = 0. (2.17a,b)

The total fluid volume in each generation i is defined by

Vi = α
iHi, (2.18)

and the outlet flux from the ith channel, Q̂i, can be related to the sum of the upstream
volumes by

Q̂i =
1
3

n−1∑
j=i

Vj, (2.19)

where the factor −1/3 compared with (2.14) comes from differentiating the total
upstream volume of the system with respect to time. Similarly, we can relate the
pressure in the downstream point (outlet) of the ith channel to the sum of the
downstream pressure drops,

P̂i =

i−1∑
j=0

1Pj, (2.20)

where the pressure drop is defined by 1Pi = P̂i+1 − P̂i.

3. Numerical results
In this section, we investigate an example system by solving (2.12) and (2.13) in

order to introduce the general method of analysis (see § A.1 for the computational
details). We choose the values η=1/2 and α=2 and note that this case is qualitatively
similar to the one presented by Dana et al. (2018), where instead η= 1. As previously
mentioned in § 2.2.1, we discuss this example using φ∗= 1, meaning α∗= 2 and η∗=
1/2. The resulting system is a bifurcating network with a decreasing elastic modulus
towards the upstream direction (i.e. a ‘soft tip’ system).

The time evolution of the apertures for the case n= 6 is presented in figure 2(a).
At early times, the solution is significantly influenced by the initial condition (2.8a),
while at late times the solution (dashed lines) tends to a t−1/3 power law. When
multiplied by t1/3, we see that the solution tends to the constants Hi (solid lines)
according to (2.15b). The root channel has the smallest aperture, which, according to
the elastic equation (2.7b), is a direct result of the pressure being the smallest
at the root together with the root channel having the largest elastic modulus.
Furthermore, it is evident that the transition to the late-time behaviour essentially
occurs simultaneously in all generations.

The late-time pressure, volume and flux distributions in the network for n= 6 are
presented in figure 2(b). The chosen parameter values yield a somewhat extreme
limit, where the pressure gradient is almost entirely concentrated in the root channel
and the volume contained in the tip generation is much larger than the downstream
volumes. The bifurcation (α > 1) causes the majority of the network’s volume to
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i = 0

P(X)/P̂6

Q(X)/Q̂0

Vi/V5

i = 0

i = 1

i = 1

i = 2

i = 2

i = 3

i = 3

i = 4

i = 4

i = 5

i = 5
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hi(t)t1/3
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0.6
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1.0

FIGURE 2. (Colour online) Numerical solutions for n= 6 with α= 2 and η= 1/2 (i.e. a
bifurcating system with decreasing elasticity). (a) Time evolution of the fracture apertures,
hi(t), in both physical non-dimensional space (dashed lines) and multiplied by t1/3 so
that the results (solid lines) tend to the constants Hi according to (2.15b). (b) Late-time
distributions of pressure (solid line), flux (dotted line) and volume (dashed line, equation
(2.18)) in the continuous variable X= x+ i. The time-scaled distributions along the network
are normalised by the maximum calculated values.

be localised near the tip. This is enhanced by the fact that the softer tip (η < 1)
allows the upstream channels to hold more fluid than the downstream ones. Since the
volume changes generate the flux (2.19) and the volume is mostly localised at the tip,
the flux throughout the rest of the network is approximately constant as shown by
the dotted line in figure 2(b). The pressure is approximately constant through much
of the network since the pressure drop is concentrated in the root channel.

3.1. Results of limiting behaviours
We now present several numerical results, each based on a specific set of values (α, η)
that correspond to different limiting behaviours, where both the pressure drop and the
volume are nearly completely contained within a single generation (root or tip) at the
edge of the network. As we explain in more detail in § 4, we define the error estimates
εp and εv for the ratio between the value of the feature (pressure drop or volume,
respectively) in the edge (root or tip) generation and its neighbour. Thus, when εp� 1
and εv� 1, both the pressure drop and volume are contained in the appropriate edge
generations.

The pressure and volume distributions in the continuous spatial variable X for n=10
and several combinations of α (the branching factor) and η (the elasticity factor) are
shown in figure 3. Each of the four plots represents a different localisation set of
the features (volume and pressure drop) to either edge (root or tip) of the network.
The reasoning behind the choice of parameter values α and η, based on the ‘error
estimates’ εp and εv from each regime, will be made clear in § 4. Figure 4 shows
analogous results using different sets of parameters (α, η). Here, although the bulk
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1.0
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P/p̂n
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FIGURE 3. (Colour online) Late-time numerical results (thick lines) of pressure and
volume distributions for n= 10 and (α, η) chosen to yield εv = εp= ε= 0.1 (see § 4). The
results are normalised by their maximum values p̂n and Vmax. Results are for: (a) α =
ε1/2, η = ε−3/2, p̂n = 7.23 × 108, Vmax = 0.51; (b) α = ε−2, η = ε−2, p̂n = 7.25 × 1011,
Vmax = 5.13× 1011; (c) α = ε3/2, η = ε1/2, p̂n = 0.87, Vmax = 0.52; and (d) α = ε−1, η = 1,
p̂n = 1.46× 103, Vmax = 1.46× 1012. The thinner lines are the asymptotic predictions from
§ 4, also scaled by the maximum calculated numerical values.

of the volume and pressure drop are still localised near the respective network edges,
they are spread out along multiple channels.

4. Late-time asymptotic regimes
In § 3.1, four main asymptotic cases were introduced, dependent on whether the

dominant volume (whose change generates the flux) and pressure drop are located
at the root (i= 0) or at the tip (i= n− 1), as illustrated in figure 3. In this section,
we present asymptotic solutions for the four cases and some of their extensions.
Examining the behaviour in the various limits allows a better understanding of
the system. In each case, we will identify two parameters, (εv, εp), depending on
(α, η), that must be smaller than unity in order for the volume and pressure drop,
respectively, to be located at the appropriate end.

4.1. Volume at the tip
4.1.1. Volume at the tip and pressure drop at the root (‘V: tip, 1P: root’)

We first analyse the case where the volume is localised at the tip and the pressure
drop at the root, which includes the examples plotted in figures 2 and 3(d). Based on
the observed profiles of the similarity forms P and V along the network, we assume
that the pressure is uniform across all the channels except the root (Pi≈ P, for i> 1)
and that almost all of the volume in the system is contained in the tip channel (i.e.
V ≈ Vn−1), so that the flux Q is constant along the network except in the tip channel
(i.e. Qi ≈Q, for i 6 n− 2). When solving the governing equations (2.16a,b) for Hn−1
subject to the boundary condition (2.17b), we find that

H−2
n−1 ∼ P̂n − P̂n−1� P, (4.1)
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0.5

0 2 4 6 8 10

1.0

0.5

0 2 4 6 8 10

1.0

0.5

0 2 4 6 8 10

1.0

0.5

0 2 4 6
X X

8 10

P/p̂n
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FIGURE 4. (Colour online) Numerical results of pressure and volume distributions for
n=10 and εv= εp= ε=1/2 (see § 4). The results are normalised by their maximum values
p̂n and Vmax. Results are for: (a) α = ε1/2, η= ε−3/2, p̂n = 4.23× 102, Vmax = 6.93× 10−1;
(b) α = ε−2, η= ε−2, p̂n = 3.46× 103, Vmax = 3.06× 103; (c) α = ε3/2, η= ε1/2, p̂n = 1.65,
Vmax = 7.65× 10−1; and (d) α= ε−1, η= 1, p̂n = 1.6× 101, Vmax = 8.17× 103. The thinner
curves show the self-similar interior solution (A 6), from § A.2.2, in (a); a numerical
solution for a network of half the size (n= 5), as discussed in § A.2.3, in (b,c); and the
asymptotic result (4.9), derived in § A.2.1, in (d).

since we assume the pressure at both nodes of the tip channel can be approximated
as P. We note that, since the pressure is approximately uniform in space, the pressure
distribution in a single channel is approximately linear, and the nonlinear term in
the force balance (2.16c) can be neglected. This approximation means that, when the
pressure changes little across a channel, then the squeezing effect can be neglected.
Then, solving (2.16c) with (4.1) for Hn−1 we obtain

Hn−1 =
1
ηn−1

P. (4.2)

From (2.19), the flux may now be expressed as

Q≈
1
3

Vn−1 =
1
3

(
α

η

)n−1

P. (4.3)

Subject to the assumptions that P1 ≈ P and Q0 ≈ Q1 ≈ Q, the governing equations,
(2.16b,c), for the root channel become

Q=H3
0P,

P
2
=H0, (4.4a,b)

which yield
H0 = (Q/2)1/4, P= (8Q)1/4. (4.5a,b)

Combining with the flux expression (4.3), we obtain

P=
2

31/3

(
α

η

)(n−1)/3

, Q=
2

34/3

(
α

η

)(4/3)(n−1)

. (4.6a,b)
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The leading-order (i.e. assuming uniform pressure) apertures and pressure profiles are
thus

H0 = P/2, P0(x)= Px, (4.7a,b)

Hi = P/ηi, Pi(x)= P, for i > 1, (4.7c,d)

which are plotted using thinner curves in figure 3(d).
We now calculate an asymptotic error estimate for the localisation of the different

features. By considering the volume and pressure drop to be contained in the tip
and root, respectively, we have neglected all other pressure drops and volumes in the
network. Expressing the volume in each generation as Vi ∼ (α/η)

iP, we can estimate
the relative error due to neglecting the volume in generation i = n − 2 (and below)
as εv ∼ Vn−2/Vn−1 ∼ η/α. Similarly, for the pressure drop, generally expressed by
1P̂i∼Q/(αiH3

i ), we obtain near the root that εp∼1P1/1P0∼ η
3/α. The result (4.6)

can thus be expected to hold when

εv =
η

α
� 1, εp =

η3

α
� 1. (4.8a,b)

When exploring other cases we will obtain analogous, but different, expressions for
the errors (εv, εp) in each regime.

The change in volume or pressure distribution with the respective error estimates
εv or εp is presented in figure 5 for n = 5. As can be seen from (4.8), each pair
of values (εv, εp) corresponds to one set of parameter values, i.e. for the present
case (α, η) = (ε−3/2

v ε1/2
p , ε−1/2

v ε1/2
p ). Figure 5(a) shows the volume distribution as εv

is increased from 0.1 to 10 while εp= 0.1 is held fixed. We observe that, as εv→ 1−,
the volume that was initially contained in the tip is redistributed more evenly along
the network. As εv becomes greater than unity, the volume shifts further towards the
root end of the network, until the fluid volume is nearly completely contained (by
an order of magnitude) in the root channel. Similarly, figure 5(b) shows the pressure
distribution as εp is increased from 0.1 to 10 while εv=0.1 is held fixed. When εp�1,
the shape of the pressure profile is of a boundary layer near the root end. As εp→ 1−,
the pressure distribution ‘smears’ over the network, and when εp > 1, the majority of
the pressure drop is located near the tip region.

The arrows in figure 5(c,d) show the path taken by the parameter values (α, η)
(in logarithmic parameter space) corresponding to the five calculations in each upper
plot, figure 5(a) and 5(b), respectively. Each arrow points in the same direction as
the corresponding arrow in the respective upper plot (i.e. the direction in which the
error is increased). The solid lines are the boundaries where the errors equal unity, i.e.
εv= εp=1, for each regime and will be discussed more in § 4.3. The transition through
the regime boundaries is in agreement with the intuition that, when the criterion in
(4.8) is not fulfilled, the localisation of the appropriate feature is at the opposite end.

In § A.2.1, we present a calculation that considers the volume in multiple channels
near the tip of the network and the pressure drop across multiple channels near the
root of the network, and hence is expected to hold even for moderate values of εv < 1
and εp < 1. The result is

P≈
[

4
3
ε1−n
v

1− εv

(
2− εp

1− εp

)]1/3

, Q≈

[
4
81

(
ε1−n
v

1− εv

)4 (2− εp

1− εp

)]1/3

, (4.9a,b)

which reduces to the simpler result (4.6) in the limit εv� 1 and εp� 1.
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FIGURE 5. (Colour online) Changes in the spatial distributions of the volume and pressure
drop along the network for n= 5 with the change in the respective error parameter (εp or
εv) in the range {10−1, 10−1/2, 100, 101/2, 101

}. The errors are defined using the ‘volume
at the tip and pressure drop at the root’ regime, equation (4.8). Results are for (a) fixed
εp and (b) fixed εv . The arrows in each of the bottom plots, (c,d), are the paths of the
corresponding parameter values (α, η) in their respective upper plot, i.e. (a,b). The solid
lines are the regime boundaries (i.e. εv = εp = 1) as explained in § 4.3.

The case α=2 and η=1 (i.e. εv= εp=1/2) was studied by Dana et al. (2018), who
presented an asymptotic analysis that allows for moderate values of εv (analogous to
(A 3)) but requires εp� 1 (analogous to (4.5)) to yield P= c× 2n, where c= 2/31/3

≈

1.3867. They also solved numerically the asymptotic equation for moderate values of
εp (analogous to (A 4)) to find c ≈ 1.5875, which was a much better approximation
to their full numerical results. They concluded that the calculation that considers the
pressure drop from multiple channels constitutes a noticeable improvement over the
simpler calculation, which only considers the pressure drop from the root channel. Our
formula (4.9a) yields the excellent approximation c≈ 41/3

≈ 1.5874, without the need
for a separate numerical calculation for each choice of parameters (α, η).

4.1.2. Volume and pressure drop at the tip (‘V: tip, 1P: tip’)
We continue to investigate the case where the volume is localised near the tip, but

now assume that the pressure drop also occurs near the tip as well. Since the dominant
pressure drop is located at the tip, i.e. P̂n−1� P̂n, the governing equations (2.16) for
the tip channel (i= n− 1) simplify to

Q̂n−1 =
1
3
αn−1Hn−1,

Q̂n−1

2
= αn−1H3

n−1P̂n,
P̂n

2
+

1
36H2

n−1
= ηn−1Hn−1, (4.10a−c)

which are of the same form as the equations for a single isolated channel (n= 1). The
solution is

Hn−1=
1

32/3
η−(1/3)(n−1), P̂n=

31/3

2
η(2/3)(n−1), Q̂n−1=

1
35/3

(
α3

η

)(1/3)(n−1)

, (4.11a−c)
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Backflow from a model fracture network: an asymptotic investigation 913

and the corresponding (continuous) pressure profile is

Pn−1(x)=
31/3

2
η(2/3)(n−1)x(2− x). (4.12)

The flux through the rest of the network is uniform at leading order since we assume
that essentially all of the volume is contained in the tip channel and we denote this
flux by Q = Q̂0 = · · · = Q̂n−1, equation (4.11c). In order to solve for the remaining
channels (i 6 n− 2), we assume that P̂i� P̂i+1. The governing equations (2.16) then
simplify to

Q= αiH3
i P̂i+1,

P̂i+1

2
= ηiHi, (4.13a,b)

which yield

Hi =

(
1
ηα

)i/4 (Q
2

)1/4

, P̂i+1 =
Q
αiH3

i
, Pi(x)=

Q
αiH3

i
x. (4.14a−c)

Requiring that Vn−2� Vn−1 and P̂n−2� P̂n−1, we obtain the error estimates εv and εp,
and the conditions for our assumptions to hold, as

εv =
( η
α3

)1/4
� 1, εp =

(
α

η3

)1/4

� 1. (4.15a,b)

These expressions are different from those derived above in (4.8), but the common
boundary between the two regimes is given by εp= 1, i.e. α= η3, in both cases, as is
to be expected. The boundary between the two regimes can also be demonstrated by
holding εv = 0.1 fixed and letting εp grow beyond unity. This is shown in figure 5(b)
starting from the ‘volume at root, pressure drop at tip’ regime. The pressure drop,
previously contained at the root, slowly spreads along the network. Once εp > 1, the
pressure drop starts concentrating towards the tip end of the network to achieve the
current regime. Figure 5 will be discussed further in § 4.3.

4.2. Volume at the root
When essentially all of the volume is contained in the root channel (i= 0), there is
almost no flux from the remainder of the network (i.e. Q̂1� Q̂0). Hence, the system
behaves like an isolated channel, satisfying

Q̂0 =
1
3

H0,
Q̂0

2
=H3

0P̂1,
P̂1

2
+

1
36H2

0
=H0, (4.16a−c)

which yields

H0 =
1

32/3
, P̂1 =

31/3

2
, P0(x)=

31/3

2
x(2− x), Q̂0 =

1
35/3.

(4.17a−d)

To account for the upstream pressures, we can estimate the ith pressure drop,
1P̂i, using a scaling argument. Since for each generation i, the upstream volume is
negligible compared with the local volume (i.e. Vi+1 � Vi), the flux through the ith
channel scales as the local volume, αiH3

i 1P̂i ∼ α
iHi, which yields

1P̂i ∼H−2
i . (4.18)
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4.2.1. Volume and pressure drop at the root (‘V: root, 1P: root’)
When both the volume and the pressure drop are localised near the outlet (i= 0),

the pressure in the remainder of the network is again assumed to be approximately
uniform at P = P̂1 = 31/3/2 (which is thus also the maximum pressure). Hence, the
solution is

Q̂i = α
i Hi

3
, P̂i = Pi(x)= P, Hi =

P
ηi
, 1 6 i 6 n− 1. (4.19a−c)

The resulting local volumes Vi = (α/η)
iP and the pressure drops 1P̂i ∼ η

2iP−2 must
decay, so we require

εv =
α

η
� 1, εp = η

2
� 1 (4.20a,b)

for our solution to hold.

4.2.2. Volume at the root and pressure drop at the tip (‘V: root, 1P: tip’)
When the pressure drops increase upstream, the local pressure drop is also an

estimate for the local pressure. Similar to (4.18), we obtain the balance

Q̂i = α
i Hi

3
, P̂i ∼1P̂i ∼H−2

i ∼ η
iHi, (4.21a,b)

which implies

Q̂i ≈
1
3

(
α

η1/3

)i

, Hi ≈ η
−i/3, P̂i ≈ η

2i/3. (4.22a−c)

The conditions for rapidly decaying volume Vi= (α/η
1/3)i and increasing pressure P̂i,

(4.22c), then yield
εv =

α

η1/3
� 1, εp = η

−2/3
� 1. (4.23a,b)

Since the volume decays (Q̂i+1� Q̂i) and pressure grows rapidly (P̂i+1� P̂i), each
individual section behaves like an isolated channel,

Q̂i =
1
3
αiHi,

Q̂i

2
= αiH3

i P̂i+1,
P̂i+1

2
+

1
36H2

i
= ηiHi, (4.24a−c)

which yields

Hi =
η−i/3

32/3
, P̂i+1 =

31/3

2
η2i/3, Pi(x)=

31/3

2
η2i/3x(2− x), Q̂i =

1
35/3

(
α

η1/3

)i

.

(4.25a−d)

The maximum pressure is

P̂n =
31/3

2
η(2/3)(n−1). (4.26)
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Backflow from a model fracture network: an asymptotic investigation 915

4.3. Summary and the regime plot
We have derived the late-time asymptotic solutions for the flux, aperture and pressure
distribution along the network for the four cases, i.e. the bulk of the volume and
pressure drop is localised near either the root or tip end. In each case the volume and
pressure distributions are assumed to be localised at an edge by neglecting all other
volumes and pressure drops along the network. For each of the obtained solutions,
estimates for the asymptotic error, εv and εp, have been calculated. We can see that
asymptotic results for n= 10 plotted along with the numerical results in figure 3 show
a good agreement to the order of O(εv, εp) as expected. This gives us confidence in
our derivation and we continue in describing the late-time asymptotic results of the
model.

We proceed to look at the error estimates derived in the different regimes. In
figure 5(a), we see that, for a fixed εp = 0.1, relaxing εv towards unity results in
the spreading of the volume along the network (towards the root). When εv becomes
much larger than unity, the volume begins collecting near the root channel. The
system then approaches the distinct limit where both volume and pressure drop are
contained in the root. The arrows in figure 5(c,d) indicate the path of values of the
chosen parameter sets in figure 5(a,b) respectively. As seen in figure 5(b), for a
fixed εv = 0.1, relaxing εp towards unity results in a spreading of the pressure drop
along the network (towards the tip). When εp is larger than unity, the pressure drop
collects near the tip channel. The system then approaches the distinct limit where
both volume and pressure are contained in the tip.

We now present a schematic regime diagram (figure 6) in logarithmic (α, η) space,
showing at which end the volume and pressure drop are concentrated for any given set
of values. Typically, moving to the right in the diagram (i.e. increasing α) increases
the number of branches at the tip end of the network, which causes the volume to shift
towards the tip. Moving up in the diagram (i.e. increasing η) increases the rigidity
near the tip end and hence can be expected to reduce the apertures at the tip end and
cause the pressure drop there to increase. The solid lines (corresponding to εv = 1
or εp = 1 for each of the regimes) are the actual regime boundaries, so that crossing
them means the transition of the relevant feature (volume or pressure drop) from being
mostly contained near the given end (according to the current regime) towards being
mostly contained near the opposite end. For example, the parameter set marked with
a triangle in figure 6 (presented in figure 2) are in the ‘volume at tip, pressure drop
at root’ regime. The further away from the relevant solid line, the smaller the error
value. If we move towards the upper solid line (i.e. εp = 1) then εp grows. Similarly,
approaching the solid line located in the bottom left quadrant (i.e. εv = 1) means εv
grows.

The dashed contours in figure 6 show where the asymptotic error of the results
derived in this section is 10 %, i.e. εv = 0.1 or εp = 0.1. Outside these lines, in the
unshaded regions, we consider the volume and pressure drop to each be truly localised
to a single generation of channels, such as for the cases shown in figure 3, which
correspond to the four intersections of the dashed lines (round markers in figure 6).
Inside these lines, in the shaded region, as shown in figure 4 for εv = εp = 1/2, the
volume and pressure drop remain localised near the root or tip end of the network,
but spread out across multiple generations of channels rather than being contained in
a single generation. We investigate this region of parameter space in more detail in
appendix A, and show that the main physical principles remain the same.
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V: root
ÎP: tip

V: tip

å = 2, ˙ = 0.5

Ó√ = Óp = 0.1

ÎP: tip

V: tip
ÎP: root

V: root
ÎP: root

-4 -2 0
log10(å)

lo
g 1

0(
˙)

2 4

-2

0

2

4

FIGURE 6. (Colour online) An asymptotic regime diagram plotted on a logarithmic scale
of (α, η) space. In each region, bounded by the solid lines εv = 1 or εp = 1, the volume
and the pressure drop are localised near either the root (i= 0) or the tip (i= n− 1). In the
unshaded regions, bounded by the dashed lines, i.e. εv = 0.1 or εp = 0.1, the volume and
pressure drop are approximately localised to a single channel near the root or tip. In the
shaded region, one or both are spread out over multiple channels. The round markers are
the parameter values for the numerical results presented in figure 3, based on εv= εp= 0.1.
The triangle is the parameter set used in figure 2.

5. Drainage time

In addition to the late-time dynamics and volume and pressure distributions studied
in § 4, the early-time dynamics is also of great importance for the hydraulic fracturing
industry, in particular with regards to wastewater management and hydrocarbon
production planning. The operation of hydraulic fracturing wells necessitates better
management and prediction of the backflow quantities, and time scales, of the injected
fracturing fluids. It is useful to define a measure for comparison of the behaviour
of different network structures, based on the relative amount of volumetric flux they
produce in a given time period, i.e. how fast is drainage.

We measure the drainage relative to the initial volume V∗init (non-dimensionalised to
Vinit), defined by

V∗init =

n−1∑
i=0

(
α∗φ∗

η∗

)i p∗L

Ê
=

p∗L

Ê
Vinit, i.e. Vinit =

n−1∑
i=0

(
α

η

)i

, (5.1)

and compare drainage efficiency using the time

t∗90 =
12µÊ2L2

p∗3
t90 (5.2)
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FIGURE 7. (Colour online) Contour plots of the time t∗90 for a network with n = 5
to evict 90 % of its initial volume, for two different non-dimensionalisations. (a) The
original non-dimensionalisation (2.5c), based on initial pressure p∗, log10(t90). (b) A
non-dimensionalisation (5.3) based on initial volume V∗init, log10(t̃90) = log10(t90V3

init). The
dashed lines are the regime boundaries from figure 6.

that it takes for 90 % of the initial volume to be ejected from the system. (The
value 90 % is somewhat arbitrary, but should give a good indication of how drainage
efficiency varies with α and η in general.)

Calculated values of log10(t90) are presented for different parameter values in
figure 7 for n= 5. Glancing at the trends presented in figure 7(a), we can immediately
see a general decrease in drainage efficiency from the top left quadrant (‘volume at
root, pressure drop at tip’) towards the bottom right quadrant (‘volume at tip, pressure
drop at root’). This trend is a result of two distinct physical effects. Firstly, an increase
in the branching factor α shifts the initial volume towards the tip end of the network
and hence delays the drainage. (Although not shown, for certain scaling forms, this
trend is further enhanced with an increase in n as the bulk volume is moved further
away from the outlet (Dana et al. 2018).) Secondly, an increase of the elasticity
factor η has the reverse effect, shifting the volume towards the root and enhancing
the evacuation rate (since the rigid tip is more effective at expelling the fluids). As
a consequence, the network is least efficient when α � 1 and η � 1, i.e. in the
asymptotic regime with volume at the tip and pressure drop at the root.

Looking more closely at the upper right corner of figure 7(a), we find that the
curved contours indicate non-monotonicity in η: for example, for α = 101/2, as η
increases, t90 initially decreases as expected, but then increases for a while, before
decreasing again. This is due to the varying initial volume in the network, as we shall
now show.

The non-dimensional initial volume Vinit (5.1) varies with α (by the addition of more
branches) and η (by the change of the initial apertures), so figure 7(a) is comparing
the evacuation times of networks with different initial volume (but with the same
initial pressure). This can yield misleading results even though t90 is defined relative
to the initial volume. If we consider two physical systems with different α∗ and η∗

but the same initial volume V∗init, then their different initial pressures p∗ result in the
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drainage times t∗90 being non-dimensionalised using different time scales (2.5c). Hence
comparing the values of t90 can yield the opposite result to comparing the original
values t∗90.

Thus, for a direct comparison, we need to replace the non-dimensionalisation (2.5),
which is based on the initial pressure p∗, with a non-dimensionalisation based on
initial volume V∗init, such as

h̃i = h∗i

/(
V∗init

L

)
, p̃i = p∗i

/(
ÊV∗init

L

)
and t̃= t∗

/(
12µL5

ÊV∗3init

)
, (5.3a−c)

where the tildes indicate the new rescaling. (The spatial variable x remains the same.)
These are related to the original non-dimensional variables (2.5) by

h̃i

hi
= Vinit,

p̃i

pi
= Vinit and

t̃
t
= V3

init, (5.4a−c)

where Vinit is the initial volume (5.1) under the original non-dimensionalisation.
The contour plot of drainage time for the new non-dimensionalisation (5.3) is shown

in figure 7(b). The result for t̃ is now monotonic in both α and η, which confirms
the intuitive explanations presented above. We conclude that the non-monotonicity
observed in the upper right corner of figure 7(a) is simply due to the variation of
initial volume (5.1) with α (which adds branches) and η (which affects the initial
apertures).

We can also conclude that, in general, when comparing non-dimensional results for
t∗90, one must be aware of which parameters were used in the non-dimensionalisation
and hence must be considered fixed in order for the comparison to be valid. For
example, when comparing the effect of the number of generations n on the drainage
efficiency, the results can differ depending on which length is held fixed: the length
L of a single channel or the length L

∑n−1
i=0 φ

∗i of the entire network. Yet another
possibility is that no particular length is fixed, and instead, for example, both the
initial volume V∗init and the initial pressure p∗ are held fixed.

6. Summary and discussion

In this paper we have considered fluid flow out of a relaxing fracture network
characterised by parameters accounting for a branching factor and spatially varying
length and elastic modulus. This is an extension of the case considered by Dana et al.
(2018) that assumed these properties to be uniform. The variations were described by
a self-similar model, in which each property (channel length, number of channels in
a generation or elastic modulus) is multiplied by an additional single factor φ∗, α∗ or
η∗ with every further generation upstream. We used numerical results (figure 3) for
various parameter values that provide distinct volume and pressure distributions along
the network, which led to characterising the entire parameter space using four main
regimes based on the localisation of the fluid volume and pressure drop. For example,
when the pressure drop is localised near the root, the network can be approximated
as a reservoir with a uniform pressure along the network, and when the volume is
near the tip, the flux can be considered as uniform along the flow path. Conversely,
when the pressure drop is near the tip and the volume near the root, each channel
behaves like an isolated channel, not feeling the effects of its upstream neighbours.
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Regime Sections εv εp P̂n Q̂0

V: tip, 1P: root 4.1.1 ηα−1 η3α−1 2
31/3

(
α

η

)(1/3)(n−1) 2
34/3

(
α

η

)(4/3)(n−1)

V: tip, 1P: tip 4.1.2 η1/4α−3/4 α1/4η−3/4 31/3

2
η(2/3)(n−1) 1

35/3

(
α3

η

)(1/3)(n−1)

V: root, 1P: root 4.2.1 αη−1 η2 31/32−1 3−2/32−1

V: root, 1P: tip 4.2.2 αη−1/3 η−2/3 η2n/3 3−1

TABLE 1. Main asymptotic results of error estimates, tip pressure and outlet flux for the
different regimes.

Asymptotic solutions for the time evolution of the apertures, pressure profiles and
outlet flux were found for each regime (see summary of results in table 1) in the
main cases where the fluid volume and pressure drop are concentrated in a single
generation of channels at either end of the network. The predicted values agree well
with the numerical results to the order of error suggested for the parameters in each
regime, i.e. O(εv, εp), when εv, εp� 1 (figure 3). For more moderate values of εv and
εp, the fluid volume and pressure drop are spread out across multiple generations, but
the same physical principles hold, and some asymptotic results have been found (see
§ A.2 and figure 4). The error parameters describe the distributions of the features
along the network well (figure 5) and have given us confidence in our asymptotic
results.

In addition to the late-time asymptotic behaviour, we also investigated the
early-time behaviour in the form of drainage time (i.e. the time needed to drain
90 % of the initial volume of the network). A larger value of α or smaller value
of η causes the initial volume to shift away from the outlet, and hence delays
drainage. This monotonic dependence of the drainage time on α and η is evident
in figure 7(b), which uses a non-dimensionalisation involving the initial volume
and hence corresponds to comparing networks with the same initial volume. For
other non-dimensionalisations, such as the original one which was based on initial
pressure rather than volume, the variation of the drainage time with α and η is more
complicated (figure 7a).

We have presented a methodological investigation of model network structures and
provided insight into how the various pre-strained network structures relax back to
their unstrained state while draining. This work was made, in part, as an attempt to
create a framework that may inform design of fluid waste management (i.e. amounts
of cumulative wastewater over time) from hydraulic fracture networks, could be
utilised to enhance production from existing network structures or even, in the future,
assist in analysing flow data from wells to gain insight into the fractured formation.
Such a framework may also be utilised for various systems where the depressurisation
of an elastic material occurs, e.g. in common microfluidic devices. However, further
advancements along with validation against observational data are still needed to
achieve such goals.
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Appendix A
A.1. Numerical computation

We evolve the discretised system formulated in § 2.3 forward using an explicit method.
At each time step we know the present hi and need to calculate ḣi, which we do
by first solving an algebraic system of equations for p̂i and q̂i. Substituting the force
balance (2.12a) into ODE (2.12b), we obtain the set of linear algebraic equations

6αih3
i p̂i + q̂i + 6αih3

i p̂i+1 − q̂i+1 = 12αiηih4
i , (A 1a)

2αih3
i p̂i + q̂i − 2αih3

i p̂i+1 + q̂i+1 = 0, (A 1b)

which are easily solved numerically. We eliminate q̂i+1 from (A 1a), p̂i from (A 1b)
and include the boundary conditions (2.13b,c) to obtain the tridiagonal matrix equation



1 0 0 0 0 0 . . . 0
4h3

0α
0 1 2h3

0α
0 0 0 0 . . . 0

0 1 −6h3
0α

0 2 0 0 . . . 0
0 0 4h3

1α
1 1 2h3

1α
1 0 . . . 0

0 0 0 1 −6h3
1α

1 2 . . . 0
...

...
...

...
...

... . . .
...

0 0 . . . 0 4h3
n−1α

n−1 1 2h3
n−1α

n−1 0
0 0 . . . 0 0 1 −6h3

n−1α
n−1 2

0 0 . . . 0 0 0 0 1





p̂0

q̂0

p̂1

q̂1

p̂2
...

q̂n−1

p̂n

q̂n


=



0
6η0h4

0

−6η0h4
0

6η1h4
1

−6η1h4
1

...

6ηn−1h4
n−1

−6ηn−1h4
n−1

0


.

(A 2)
We use the tridiagonal matrix algorithm to solve this in each time step and obtain the
temporal evolution from (2.12b).

A.2. Asymptotic results for moderate values of εp and εv
Having considered all four regimes in §§ 4.1 and 4.2, where the error estimates εv and
εp are all assumed to satisfy ε� 1, we now consider parameter choices corresponding
to more moderate values of εv, εp < 1, corresponding to the shaded region within the
dashed lines in figure 5. As we shall see, our physical insights for each regime apply
to these cases as well.

Figure 4 shows results from each of the four regimes with εv = εp= 1/2 and n= 10.
We find that in each case the dominant volume and pressure drop remain localised to
the predicted end of the network, but are spread out across multiple generations of
channels rather than being concentrated in a single one (cf. figure 3).

Since we expect the volume to change by a factor εv in each generation, the volume
can be considered as localised near either the root or tip as long as εn

v� 1. Similarly,
the localisation of the pressure drop requires εn

p� 1. Under these conditions, we now
investigate the physics in each of the four regimes.
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Backflow from a model fracture network: an asymptotic investigation 921

A.2.1. Volume at tip, pressure drop at root
In this section, we present the generalisation of the method in § 4.1.1 (in which the

dominant volume and pressure drop are confined to a single channel only) to moderate
cases (when they are spread out across multiple channels).

Given the approximately uniform pressure P in the region near the tip, the apertures
are given by (4.7c) and hence the outlet flux Q (2.19) generated by the channels near
the tip is

Q≈
1
3

n−1∑
i=0

αiHi ≈
(α/η)n

α/η− 1
P=

ε1−n
v

1− εv
P, (A 3)

where εv = η/α < 1. Here, we have assumed that εn
v� 1, so that we can neglect the

contributions from channels far away from the tip, such as those near the root where
the pressure is not uniform. The result (A 3) reduces to the original result (4.3) in the
limit εv� 1.

Given the approximately uniform flux Q� 1 through the region near the root, we
rescale P̂i =Q1/4P̄i and Ĥi =Q1/4H̄i to simplify (2.16b) and (2.16c) to

1= αiH3
i (P̄i+1 − P̄i),

P̄i+1 + P̄i

2
= ηiH̄i ⇒ P̄i+1 − P̄i = ε

i
p

(
2

P̄i+1 + P̄i

)3

, (A 4)

where εp = η
3/α < 1. Starting from P̄0 = 0, equation (A 4) can be solved numerically

to yield P̄∞ = limi→∞ P̄i as a function of εp (figure 8a). The result P=Q1/4P̄∞ then
replaces (4.5b), and when combined with (A 3) yields P and Q. The condition εn

p� 1
is required for the pressure drops to be negligible at the tip end.

We can calculate P̄∞ asymptotically as follows. For large i, the difference between
P̄i and P̄i+1 is small, so we can approximate (A 4) as

P̄4
i+1 − P̄4

i

4
= εi

pF(P̄i+1/P̄i)≈ ε
i
p ⇒

P̄4
i

4
=C+

i−1∑
j=0

εj−1
p =C+

1− εi
p

1− εp
, (A 5a,b)

where F(x)= 2(x3
+ x2
+ x+ 1)/(1+ x)3 ≈ 1 for x≈ 1, and the constant C must be

determined from the solution at smaller values of i where the approximation F ≈ 1
does not hold. For εp � 1, the calculation (4.5) yields C = 1. For εp = 1, we solve
(A 4) numerically and find C ≈ 1.008 (using only the first equality in (A 5b), which
is valid for εp = 1). Noting the coincidental close agreement between the two results
C = 1 and C ≈ 1.008 at opposite ends of the range 0 < εp < 1, we use C = 1 as a
universal approximation, i.e.

P̄i ≈

[
4
(

1+
1− εi

p

1− εp

)]1/4

, P̄∞ ≈ P̄a =

(
4(2− εp)

1− εp

)1/4

. (A 6a,b)

This approximate result agrees with the numerical result to within 0.01 % for all
values of εp < 1, as seen in figure 8(a,b).

We conclude that the main physical principles discussed in § 4.1.1 remain valid: the
tip pressure P determines the volume contained near the tip and hence the outlet flux
Q, yielding a formula (A 3), analogous to (4.3), for Q in terms of P. The outlet flux
Q determines the pressure drop near the root and hence the tip pressure P, yielding a
formula (A 6), analogous to (4.5b), for P in terms of Q. Combining the two formulae
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0

2

4

(a)

(b)

(c)

0.5

(P-∞ - P-a)/P-∞

P-∞ (˙/å)n/3P
AsymptoticP-a

1.0 Ó√ = 0.9

Ó√ = 0.5

Ó√ = 0.1

0 0.5

Óp = ˙3/å

0.5

1.0
(÷10-4)

1.0
Óp

0 0.5 1.0

1

2

3

4

5

6

FIGURE 8. (Colour online) Results for the moderate case of the ‘volume at tip, pressure
drop at root’ regime. (a) Comparison between the numerical solution P̄∞ of (A 4) and
the asymptotic approximation P̄a (A 7), as functions of εp = η

3/α. (b) The relative error.
(c) The maximal pressure P for n= 10 as a function of εv and εp, showing both numerical
results and the asymptotic approximation (4.9a).

yields (4.9). This result is valid for all εv = η/α < 1 and εp= η
3/α < 1 (provided that

εn
v, ε

n
p � 1), and reduces to (4.6) in the limit εv, εp � 1. The predicted tip pressure

P, and the volume and pressure profiles, i.e. (4.7c) and (A 6), agree well with the
numerical results in figure 4(d). This confirms that our understanding of the physical
mechanisms controlling the dynamics of the system is correct. A comparison between
the numerical and asymptotic results for P= P̂n is shown in figure 8(c). The results
agree excellently for small values of εv and εp, and as εv, εp→ 1 the O(εn

v, ε
n
p) error

becomes noticeable as expected.

A.2.2. Volume at root, pressure drop at tip
If the volume is localised near the root and the pressure drop at the tip, then for

εv, εp� 1 (see § 4.2.2) each channel behaves like an isolated channel since it depends
on the pressure downstream (which is negligible) and the flux upstream (which is
also negligible). For moderate values of εv, εp < 1, each channel can be influenced by
multiple channels upstream and downstream, but in the bulk of the network (far away
from the root and tip ends) the channels are not affected by the boundary conditions
(2.17) and hence a self-similar structure of the form

P̂i = η
2i/3P̄, Hi = η

−i/3H̄, Q̂i =

(
α

η1/3

)i

Q̄ (A 7a−c)

can be found, where substitution into the governing equations (2.16a) yields the
coefficients

H̄ = 3(1− εv)Q̄=
(
(1+ εv)(1+ εp)

12(1− εv)(1− εp)
+

1
36

)1/3

, P̄=
(1+ εv)εp

6(1− εv)(1− εp)H̄2
.

(A 7d,e)
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0 0.2 0.4 0.6 0.8 1.0

1

2

Similarity value
˙-2n/3P̂n

3

Ó√ = 0.9

Ó√ = 0.5

Ó√ = 0.1

Óp

FIGURE 9. (Colour online) The maximal pressure P̂n (rescaled by η2n/3) for n= 10 as a
function of εv and εp, showing both numerical results and the order-of-magnitude estimate
η−2n/3P̂n =O(P̄) obtained from the self-similar solution (A 6).

The self-similar result (A 7) is shown in figure 4(a), and is indeed seen to apply
in the bulk of the network away from the ends. Near the root and tip end, the
solution deviates from (A 7) in order to satisfy the boundary conditions (2.17), but
the expressions (A 7) can be used as order-of-magnitude estimates for the maximum
pressure P̂n =O(η2n/3P̄) (see figure 9) and the outlet flux Q0 =O(Q̄).

A.2.3. Volume and pressure drop at the same end (root or tip)
If both the volume and pressure drop are localised at the same end of the network

(like in §§ 4.1.2 or 4.2.1), then that end (whether a single channel in the original case
or multiple channels in the moderate case) controls the backflow dynamics while the
rest of the network can be neglected.

We confirm this in figure 4(c) for the root end, by comparing the results for a
network of size n= 10 and a network of size n= 5, which corresponds to the root-end
half of the larger network. Since ε5

v, ε
5
p� 1, the region 56 i6 9 in the larger network

has a negligible effect. In general, the structure near the root is independent of n when
εn
v, ε

n
p� 1. The maximal pressure P and outlet flux Q then depend only on α and η,

and can be calculated numerically.
For the tip end, figure 4(b) shows a comparison between results for a network of

size n = 10 and a network of size n = 5 that has been shifted and rescaled so that
it corresponds to the tip-end half 5 6 i 6 9 of the larger network. (Specifically, P is
multiplied by (η2/3)5 and Vi by (α/η1/3)5.) Again, there is good agreement between the
two results, indicating that the root half of the network is negligible, and that P/η2/3

and Q/(α/η1/3)n are independent of n.
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