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Abstract – Composite membrane structures, used extensively in separation processes, comprise
an ultra-thin selective polymer film cast over a porous support, whose pores partially obstruct
transport out of the top film. Here, we model the composite as a finite thickness slab with a
periodic array of circular absorbing patches in an otherwise reflective surface and study the effective
transport properties of the composite. We obtain an analytical approximation for the effective
diffusive flux as a function of the geometrical parameters, namely the film thickness, the support
porosity and the pore size. We find a good agreement with full numerical solutions, and that a
good effective rate is achievable with a relatively small number of pores.

Copyright c© EPLA, 2015

Introduction. – Semi-permeable membranes provide
a simple, robust and energy efficient basis for separation
of mixtures, both liquid and gaseous, as well as energy
conversion from salinity gradients [1–4]. State-of-the-art
membranes used for such separation, and particularly
for wastewater purification and seawater desalination, are
polymeric composite structures comprised of an ultra-thin,
selective film (∼ 10–100 nm thick) cast over a porous mem-
brane (see fig. 1 for an image and a schematic drawing
of the support layer). This structure has proven to be
a successful strategy for controlling the thin-film thick-
ness without compromising the mechanical integrity of the
overall membrane. In fact, the underlying membrane is
commonly known as “the support”, reflecting its assumed
role in providing mechanical backing for the delicate thin
film (often referred to as the “active” layer, since the sepa-
ration is assumed to be controlled by it). However, recent
studies have established the important role the support
plays in dictating the overall transport properties of the
composite structure. This is partially caused by the sup-
port structure’s impact on the fabrication process through
interfacial polymerization [5], but is primarily due to mod-
ification of diffusive transport at the film-support inter-
face [6,7]; simply put, the solid fraction of the support
obstructs transport, while the fluid-filled pores allow sig-
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Fig. 1: (a) Scanning electron micrograph of a support mem-
brane illustrating the porous structure (image reproduced
from [8] with permission from Elsevier). (b) Schematic diagram
of a portion of the composite membrane set-up considered, a
top film membrane and a bottom support with a periodic array
of pores.
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nificantly higher mass transfer rates. Thus, transport is
greatly influenced by the support surface morphology.

As shown in fig. 1(b), a particle diffusing through the
selective film encounters a “patchy” interface with the
support, with alternating solid and fluid areas. This type
of configuration, where “reactive” patches are present on
an otherwise inert surface, occurs in other processes, in-
cluding microelectrode arrays [9] and chemoreceptors or
protein ligands on the cell surface [10]. In most applica-
tions, the domain of diffusion is taken to be the infinite
half-space, so that a constant concentration is prescribed
far away from the patchy surface. This problem has been
treated in [11] considering a periodic array of circular elec-
trodes, and in [12] for irregular shapes in the limit of low
surface cover. In the present context, however, the finite
thickness of the domain is a main feature, and plays a ma-
jor role in the function of the membrane. Previous studies
have shown how the effective permeability of the mem-
brane changes with the selective film thickness, as well as
support pore size and porosity [13–15]. However, these re-
sults have mainly been obtained using numerical methods
and, as such, provide limited physical insight.

Here we obtain simple analytical expressions for the ef-
fective transport properties of the composite structure, us-
ing matched asymptotic expansions. Our results are shown
to compare very well with numerical calculations, and have
the added benefit of identifying the key combination of ge-
ometrical parameters which determines the effective flux
through the membrane.

Model. – We consider a composite membrane, com-
prising a top film of uniform thickness h overlaying a
porous support layer, modelled as a periodic array of cylin-
drical pores, each of radius R, with separation of centres ǫ,
as illustrated in fig. 1(b). The interface between the sup-
port layer and the thin film is taken to be z = 0, and the
top surface of the film (in contact with the feed mixture) is
therefore z = h. The top surfaces of the pores are denoted
Sp, and the remaining solid, reflecting support region is
denoted Ss. The diffusing species (of constant diffusion co-
efficient D) is assumed to be at a constant concentration
c∞ at the inlet/feed and to be removed from the system
when in contact with a pore at z = 0.

Scaling length with h, time with h2/D, and concen-
tration with c∞, the steady-state mass transport of the
diffusive species in the membrane may be written in the
dimensionless form

∇2c = 0, (1a)

where c(x) is the concentration and x = (x, y, z) denotes
the position vector, together with boundary conditions

c = 0 on z = 0, x ∈ Sp, (1b)

∂c

∂z
= 0 on z = 0, x ∈ Ss, (1c)

c = 1 on z = 1. (1d)

The support surface at z = 0 now comprises a square ar-
ray of periodic cells of size ǭ × ǭ, with one circular pore

Fig. 2: (Color online) Concentration distribution c and stream-
lines of ∇c through plane x = 0 obtained solving (1) with
(a) ǭ = 0.4 and R̄ = 0.08 and (b) ǭ = 1.2 and R̄ = 0.24.
In (a), the dashed regions indicate the inner regions around
each pore where x = O(ǭ2), and the dot-dashed line indicates
the boundary (at x = O(ǭ)) between the intermediate and the
outer regions. The colormap is the same in both plots.

of radius R̄ at the center of each cell, where ǭ = ǫ/h and
R̄ = R/h. The assumption of a perfect sink condition, i.e.

c = 0 when the diffusing species reaches a pore at z = 0,
should not be confused with an assumption of a perfectly
selective membrane. We note also that the perfect sink
assumption could be relaxed to consider a diffusive pro-
cess within the pore, with diffusion coefficient Dp ≫ D
(diffusion through the fluid-filled pore is much faster than
through the solid material forming the thin, selective film).
Here we consider the limit Dp/D → ∞ so that a particle
in Sp is instantly taken through the pore. The solid por-
tions of the support are taken to be impermeable; again,
this assumption could be relaxed to allow a small amount
of diffusion in the solid.

Our goal is to determine the transport rate through the
plane z = 0 as a function of the geometry, characterized
by the parameters R̄, ǭ and h. Due to periodicity, we need
only consider a single cell. We choose a coordinate system
with origin at the center of the pore, so that the domain
of diffusion is {(x, y, z) : |x| ≤ ǭ/2, |y| ≤ ǭ/2, 0 ≤ z ≤ 1}.
We denote the bottom support surface at z = 0 by S; this
contains now one single pore Sp in the center and support
material Ss = S\Sp. Since the flux is zero on the support
matrix Ss, the average dimensionless flux is

Q =
1

ǭ2

∫

S

∂c

∂z
dS =

1

ǭ2

∫

Sp

∂c

∂z
dS. (2)

Figure 2 shows the numerical solution of (1) for the
concentration c, and the diffusive flux streamlines for two
representative geometries, one with large pores (ǭ = 2
and R̄ = 0.4) and the other with small pores (ǭ = 0.4
and R̄ = 0.08). From these numerical solutions we could
compute the flux (2) for various values of the parameters.
However, this approach can provide only limited insight
into the geometric effects in the problem. Instead, in this
letter we approach the problem analytically, reducing the
support layer to an effective boundary condition using
the methods of multiple scales and matched asymptotic
expansions.
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When the pores are small, the streamlines plot
(fig. 2(a)) shows that there is a boundary layer near the
pore at z = 0 where the concentration field adapts to
the heterogeneous base, while above this boundary layer
the streamlines are vertical. In contrast, for the case with
large pores (fig. 2(b)), this boundary layer spans the mem-
brane film in its entirety. Here, we focus on the first case,
because smaller pores in the support structure result in
better, more mechanically robust membranes [16]. Thus,
we consider the regime where ǭ ≪ 1. As we will see later,
this regime can still offer a remarkably good flux through
the support layer. We will find that the distinguished
limit corresponds to R̄ = O(ǭ2), so we set R̄ = aǭ2 with
a = O(1) as ǭ → 0. We break the domain into three asymp-
totic regions: an outer region away from the support layer
where z = O(1), an intermediate region where x = O(ǭ),
and an inner region near the pore where x = O(ǭ2) (see
fig. 2(a)). The intermediate and inner regions which fol-
low are essentially equivalent to those considered in [12],
though they did not match them to the outer region, which
allows us to consider a finite membrane thickness.

Outer region. Outside the boundary layer the diffus-
ing particles see a homogenized boundary with condition

∂c

∂z
= kc on z = 0, (3)

where k (which depends on ǭ and a) is the effective removal
rate, which we aim to determine. The solution in the outer
region is then simply

c = 1 +
k(z − 1)

1 + k
. (4)

Intermediate layer. In the boundary layer region near
z = 0 we rescale x = ǭX and write c(x) = ĉ(X). In this
region the pore appears as a point sink. By symmetry, we
can replace the periodic boundary conditions on the sides
of the cell, Ssides = {Z > 0, |X| = 1/2 or |Y | = 1/2}, with
no-flux boundary conditions. Then ĉ(X) satisfies

∇̂2ĉ = 0, Z > 0, (5a)

∇̂ĉ · n̂ = 0, X ∈ Ssides, (5b)

∂ĉ

∂Z
= αδ(X, Y ), Z = 0, (5c)

where n is the outward unit normal and δ is the Dirac
delta function, with ĉ matching with c as Z → ∞. Here
α = α(ǭ) represents the (as yet unknown) strength of the
sink. Integrating ĉ over the periodic cell gives

∫

Z=0

∂ĉ

∂Z
dXdY =

∫

Z=∞

∂ĉ

∂Z
dXdY. (6)

Matching with the outer solution gives

∂ĉ

∂Z
∼ ǭ

dc

dz
(0)Z as Z → ∞ (7)

to all orders in ǭ. Using (7) and (5c) in (6) gives

α = ǭ
dc

dz
(0). (8)

To solve for ĉ, we note that, to all orders in ǭ,

ĉ = c(0) + αu, (9)

where u satisfies

∇̂2u = 0, Z > 0,

∇̂u · n̂ = 0, Z > 0, (X, Y ) ∈ Ssides,

∂u

∂Z
= δ(X, Y ), Z = 0,

u ∼ Z, Z → ∞.

(10)

In turn, the solution to (10) can be written as

u = −
1

2π‖X‖
+ G, (11)

where G is regular and does not depend on any
parameters; G can be obtained as an infinite series [12]
or solved for numerically (see appendix).

Inner region. Finally, we rescale onto the scale of the
pore by setting x = ǭ2ξ with ξ = {ξ, η, ζ} and writing
c(x) = c̃(ξ). On this scale the domain of diffusion is the
half-space ζ > 0. We find

∇̃2c̃ = 0, ζ > 0,

∂c̃

∂ζ
= 0, ζ = 0, r ≡

√

ξ2 + η2 > a,

c̃ = 0, ζ = 0, r ≤ a,

(12)

with solution (see [17])

c̃ = A −
2A

π
arcsin

[

2a
√

ζ2+(a + r)2 +
√

ζ2+(a − r)2

]

,

(13)

valid for ζ > 0. The constant A will be determined by
matching. Writing c̃ in terms of the intermediate variable
X and expanding gives

c̃ = A −
2ǭaA

π‖X‖
+ O(ǭ2). (14)

On the other hand, as ‖X‖ → 0,

ĉ ∼ c(0) + α

(

−1

2π‖X‖
+ G(0)

)

. (15)

Matching the regular parts of (14) and (15) first leads to

A = c0(0) + αG(0). (16)

Matching the singular terms gives

α = 4aǭA. (17)

Eliminating α and A from (8), (16) and (17) gives

dc

dz
(0) =

4a

1 − 4aǭG(0)
c(0). (18)
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Fig. 3: (Color online) Flux per unit area Q as a function of the
relative pore size a and the pore separation ǭ, computed from
(2) using the full numerical solution (dashed lines) and from
the asymptotic result (20) (solid lines).

Comparing with (3) we see that the effective removal rate

k =
4a

1 − 4aǭG(0)
, (19)

which agrees with the results in [12]. Numerically we find
that G(0) ≈ 0.6207 (see appendix). With k determined,
we can now use (4) to compute the average flux through
the membrane as

Q ≡
dc

dz
(0) =

4a

1 + 4a − 4aǭG(0)
. (20)

We have been working in nondimensional variables
throughout. If we redimensionalise we find that the Robin
boundary condition (3) becomes

D
∂c

∂z
= Kc on z = 0, (21)

where

K =
Dk

h
=

4RD

ǫ2 − 4RǫG(0)
, (22)

where we recall that R is the pore radius and ǫ is the
separation of pore centres. Note that K depends on the
support geometry only, and is independent of the thickness
of the selective film, h. The dimensional flux through the
membrane is

D
dc

dz
(0) =

4RDc∞
ǫ2 + 4hR − 4RǫG(0)

. (23)

Results. – The average flux Q of the solution to (1)
evaluated via (2), is compared in fig. 3 with the asymp-
totic result in (20). We observe that the asymptotic ex-
pression agrees qualitatively with the numerical solution,
and that the quantitative agreement is very good in the
parameter region expected from the asymptotic analysis,
namely when ǭ ≪ 1 and a ≪ 1.

In the previous plot we varied the relative pore size a
and the pore spacing ǭ independently. If the porosity of the
support layer φ = πR̄2/ǭ2, is kept constant, we find that
the flux increases with the pores separation ǭ (fig. 4(a)).

ǫ
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Fig. 4: (Color online) (a) Comparison of the exact (data points)
and homogenized (solid lines) flux Q as a function of the pore
separation ǭ for a constant porosity φ = πR̄2/ǭ2. (b) Flux per

unit of pore area, bQ = Qǭ2/(πR̄2) (log scale). In both plots,
each line corresponds to a different φ, taking values φ = 0.0003,
0.0005, 0.0010, 0.0017, 0.0029, 0.0051, 0.0088, 0.0154, 0.0268,
0.0468, 0.0816, 0.1422, 0.2479, and 0.4322.

This is consistent with the result that, for two isolated
pores, the maximum flux occurs as the pore separation
goes to infinity [18]. On the other hand, for a fixed pore
separation ǭ a higher porosity clearly leads to a higher flux,
though this may result in a mechanically weaker compos-
ite. Figure 4(a) shows the flux Q per unit of pore area
πR̄2. In this plot we see that there are “diminishing re-
turns” in increasing porosity to give a higher flux.

Another interesting scenario is to consider how the flux
varies for a constant pore radius R̄ (fig. 5). In this case,
for a fixed R̄ the flux per unit area Q increases as the pores
come closer (ǭ decreasing). The discrepancy between the
theoretical and numerical Q can only be seen for relatively
large pore sizes as we approach the maximum pore size,
attained when R̄ = ǭ/2.

Discussion. – We have studied the homogenization
problem of a composite membrane with a periodic nonuni-
form support layer. We find that the support layer can be
modelled by an effective Robin boundary condition (21).
The removal rate K, given in (22), depends on the geo-
metrical parameters of the support, namely the separa-
tion between pores ǫ and the pore radius R, the pore ra-
dius. However, it does not depend on the thickness of the
selective film, h.
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Fig. 5: (Color online) Comparison of the exact (data points)
and homogenized (solid lines) flux Q as a function of ǭ for a
constant pore radius R̄. The five lines correspond to radius
R̄ = 0.01, 0.05, 0.1, 0.2, and 0.3 with the arrow indicating the
direction of increasing R̄.

The limiting case k = Kh/D → 0 corresponds to a
perfectly reflecting support layer, while the limiting case
k → ∞ corresponds to a perfectly absorbing support layer.
The latter is the “perfect” support layer. This may be
counterintuitive in a membrane application, as we want
membranes to inhibit solutes passing through, but one
must recall that the purpose of the support layer is to
give mechanical support to the selective ultra-thin film,
and hence the more invisible it is to transport, the bet-
ter. At leading order the nondimensional rate k given
by (19) is O(Rh/ǫ2). This implies that the pore size needed
to achieve a sizeable flux through the composite mem-
brane is O(ǫ2/h) which can be much smaller than the
pore separation when ǫ ≪ h. For example, a pore ra-
dius R = 2ǫ2/h gives a flux 89% of that of a perfect sup-
port, with a surface porosity of only φ = 4πǫ2/h2. This
implies that, in this asymptotic regime, the support mem-
brane would be mechanically very good, while also having
a good permeability.

We can look at this conclusion in a broader perspective.
For example, in the context of biological cell receptors,
this explains why the cellular membrane can accommodate
many specialized receptors, each adsorbing molecules of a
specific kind with an efficiency of the same order as that
of a fully covered surface [10] (Chapt. 2, p. 30). A similar
problem was considered in [11], in the context of micro-
electrodes. They considered a membrane of infinite thick-
ness (solution in the infinite half-space z > 0), allowing
for bulk regeneration (nonzero right-hand side in eq. (1a))
and for surface oxidation (Robin boundary condition in-
stead of (1b) on the electrodes). They found that, in the
parameter regime where both surface electrode and bulk
reactions are switched off, their solution breaks down. This
corresponds to the solution presented here in the limit of
ǭ → 0. By splitting the domain into three regions (inner,
intermediate and outer) we were able to compute the rate
at which the average flux, given by (20), goes to zero.

An important assumption in our model is that the
solute and solvent diffusion through the thin polymeric

film is decoupled, so that the effective rate analysis applies
equally to both species. This assumption has been shown
to be consistent with experimental observations and holds
true, thermodynamically, for the low fluxes encountered
in practice. In water purification processes, the quality of
a membrane is measured by its permeability, i.e. the effec-
tive flux per unit driving force (here embodied by K), and
its solute rejection, defined as R = (1+Ks/Qw)−1, where
Qw is the water flux and Ks the salt permeability [16].
While all species diffuse across the membrane, a high re-
jection reflects the much faster transport of the preferred
species (water, say). However, in practice, the water flux
may be controlled by an applied pressure (as is the case
for reverse osmosis), while the solute transport remains
unaffected by it. At a fixed water flux, variations of the
permeability due to the support will be reflected solely
in the solute transport. Using our asymptotic expression
for the permeability, at leading order by (20), we have
R ∼ (1+φ/R)−1, which shows that rejection will increase
for larger pores at constant porosity; conversely, at fixed
pore size, rejection will decrease with increased porosity.
These inverted trends have been shown numerically in [6]
but are here revealed directly in our asymptotics. The im-
plication is that one may tune the rejection/permeability
trade-off of a membrane through manipulation of support
morphology, offering an extra degree of freedom, beyond
the structure and chemistry of the “active” layer.

Here we considered an idealized support with a periodic
square array of pores. It is natural to ask how the results
change with the way the pores (or electrodes, or cell re-
ceptors, . . . ) are distributed. This question was addressed
in [12] and [19] by considering irregular pore shapes or a
random uniform distribution of pores, respectively. In [12]
they considered the limit of low porosity and found that
the effect of the pore shape only comes at order a4 in (19).
The problem of two isolated pores was solved analytically
by Sneddon in [18], who found that the flux increased
with the pore separation, the best flux occurring when
the pores are so far apart that they do no longer interact
with each other. This implies that, for a desired surface
cover φ, the best possible distribution would be a periodic
array (in fact hexagonal rather than square), so that the
separation between any two pores is maximized. Thus, an
interesting question is whether a hexagonal array indeed
gives a better flux Q than a square array. On the other
hand, for two isolated pores the greatest reduction is 74%
of the perfect flux, and is achieved when the two pores are
in contact [18]. Therefore, the deviation from perfection is
rather small. This suggests that for multiple pores, while
support layer pore periodicity offers the best properties,
one with an equal surface porosity φ but a random pore
distribution would not be “too far off”. If manufacturing
complexity and cost come into the equation, this would
suggest that “not perfect” periodic support layers may be
preferable.

When considering the importance of the pore arrange-
ment in the support layer, we stress that our asymptotic

40005-p5
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solution shows that relatively very small pores and, hence,
very small surface porosity φ, are sufficient. In the case of
a random pore distribution, such conditions would imply
a low likelihood of pores clustering together, so that well-
separated pores can be assumed. Therefore, this would
hint towards the conjecture that pore distribution is unim-
portant in the range of surface porosities relevant to this
application.

In this work we have assumed that the support layer
had two regions, one of perfectly absorbing pores Sp and
another of perfectly reflecting support Ss. An obvious
extension would be to relax these conditions, and consider
a support with a small absorption rate, or pores that are
not perfect sinks. The latter case would be more realistic
since even when a particle reaches a pore, there is a chance
that it is not removed from the system.

Finally, while we have considered a flat patchy surface,
the results presented here can be extended in a relative
straightforward way to nonplanar surfaces encountered in
many applications, such as cell receptors.

Appendix

We look for a solution to (10) of the form u = s + G,
where s is the singular part and takes care of the sink at
X = X0 = 0 and G is the regular part. In order to solve
for s, it is convenient to “move” the singularity from the
boundary condition to the right-hand side of the equation,
and write

∇̂2s(X,X0) = δ(X − X0), Z > 0,

∂s

∂Z
= 0, Z = 0.

With the method of images, the solution is s(X,X0) =
−Γ(X − X0) − Γ(X − X

∗

0), where X
∗

0 is the image point,
X

∗

0 = (X0, Y0,−Z0), and Γ is Laplace’s fundamental solu-
tion, Γ = 1/(4π‖X‖). Setting X0 = 0 we find that

s(X) = −
1

2π‖X‖
. (A.1)

Using (A.1), the regular part G satisfies the following
problem:

∇̂2G = 0, Z > 0,

∇̂G · n̂ = ∇̂

(

1

2π‖X‖

)

· n̂, Z > 0, (X, Y ) ∈ Ssides,

∇̂G · n̂ = 0, Z = 0,

G → Z, Z → ∞. (A.2)

In the expression of the homogenized rate (19) and homog-
enized flux (20) we only need the value of G at the origin.
We compute the value of G(0) by writing G = Z + Ĝ
and solving for Ĝ numerically (replacing the boundary
condition on Z = 0 in (A.2) by ∇̂Ĝ · n̂ = 1 and the
condition at infinity by Ĝ → 0). The infinite domain is
approximated by a finite prism of height L, and we obtain

G(0) up to 4 digits of accuracy with a Richardson extrap-
olation using repeated solutions Ĝ in domains of height
L = 10, 20, . . . , 200. We find G(0) = 0.6207.
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