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The Lucas–Washburn equation, describing the motion of a liquid body in a capillary tube, is extended
to account for the effect of phase change – evaporation or condensation. The system is found to always
possess a stable equilibrium state when the temperature jump across the interface is confined to a certain
range. We show that phase change affects the equilibrium height of the meniscus, the transition threshold
from monotonic to oscillatory dynamics, and the frequency of oscillations, when present. At higher mass
transfer rates and/or large capillary radii, vapor recoil is found to be the dominant factor. Evaporation
lowers the equilibrium height, increases the oscillation frequency and lowers the transition threshold to
oscillations. For condensation, two regimes are identified: at high mass transfer rates similar trends to
those of evaporation are observed, whereas the opposite is found for low mass transfer rates, resulting
in an increased equilibrium height, lower oscillation frequencies and a shift of the transition threshold
toward monotonic dynamics.

© 2008 Elsevier Inc. All rights reserved.
1. Introduction

Capillary-driven flow is a long standing problem encompassing
hydrodynamics, contact line dynamics (wetting) and surface phe-
nomena. Its occurrence is widespread and it is found in the natural
environment, such as soil–water transport, plant transpiration, as
well as in engineered systems, e.g. fuel cells, heat pipes of loop
and other types. In particular, when a capillary of a sufficiently
small radius is brought in contact with a “wetting” fluid, the fluid
spontaneously enters the capillary and flows, displacing the fluid
already occupying the capillary. According to a recent review [1],
the problem of capillary rise in a cylindrical tube dates back to the
mid-18th century, addressed to Euler as an example of Newtonian
dynamics with a variable mass. Euler’s response is unknown, and
it was not until the pioneering works of Lucas [2], Washburn [3]
and Bosanquet [4], that a mathematical model was formulated and
analysis of various limiting cases of the problem was presented.

Within the framework of the Lucas–Washburn equation, a force
balance on a liquid body is considered, accounting for the forces
due to capillarity, gravity, viscous drag and inertia. Since then, nu-
merous theoretical and experimental studies have been dedicated
to probing various characteristics of capillary rise, see for instance
[1,5] and references therein. A primary simplification made in this
approach is the assumption of a fully developed laminar flow, al-
lowing the use of the well-known Poiseuille law to account for the
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viscous drag. Various improvements and extensions to the theory
have thus been primarily concerned with end effects, e.g. develop-
ing flow and energy dissipation at the capillary entrance, as well
as contact line dynamics, e.g. contact angle hysteresis, friction and
meniscus evolution [5–9]. Another extension considered an addi-
tional viscous drag due to the displaced gas in the capillary [7].

In the last decade, the inertial regime of the capillary flow
has received some attention, and the existence of oscillations was
demonstrated, both theoretically [10] and experimentally [7,11].
The characteristics of this inertial, oscillatory regime have been
analyzed for inviscid and viscous fluids [6], illustrating the depen-
dence of the frequency and amplitude on the physical parameters
of the liquid, as well as the entrance effects which, due to the flow
reversal, have an even greater impact on the flow than usual.

The effect of interfacial mass transfer, due to phase change by
either evaporation or condensation, on the capillary rise has thus
far, to the best of our knowledge, not been investigated within the
Lucas–Washburn framework. The possibility of an increased liq-
uid viscosity due to evaporative cooling was considered by Zhmud
et al. [7] as a possible source of discrepancy with experimen-
tal observations. However, this was ruled out as an isothermal,
vapor-saturated, experimental system should not permit sufficient
evaporation to justify the estimated increase of viscosity. The evo-
lution of an evaporating pinned meniscus due to a step change
in the evaporation rate was studied by Rand [12], who concluded
that the meniscus may experience damped oscillations under ap-
propriate conditions. The transition values for the emergence of
oscillations were found in terms of a single dimensionless parame-
ter, which strongly depends upon the capillary radius and liquid
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Fig. 1. Sketch of the system.

viscosity. For instance, in the case of water in a 1-m-long cap-
illary, this transition to meniscus oscillations occurs for a radius
larger than approximately 166 μm. Although the analysis [12] was
not made within the Lucas–Washburn model, it is nevertheless a
related problem and illustrates the possible effects imparted by in-
terfacial mass transfer.

Normally, phase change at the interface creates large acceler-
ations of the vapor due to a large disparity in liquid and vapor
densities, and the backward reaction is known as vapor recoil.
The pressure exerted by vapor recoil on the interface is directed
into the liquid phase for both evaporation and condensation [13–
15]. Hickman [16] found that vapor recoil can be very important
in terms of the behavior of the gas–liquid interface where phase
change takes place, especially under conditions of reduced pres-
sure.

It is the purpose of this paper to extend the Lucas–Washburn
theory so as to incorporate the effect of interfacial phase change
on the capillary flow dynamics. The paper is organized as follows:
Section 2 presents the model formulation, in Section 3 we present
some numerical results and discuss the various characteristics of
the flow, whereas Section 4 presents a discussion of the results.
A summary of the work is given in Section 5.

2. Model formulation

We consider a long vertical capillary of radius R , brought in
contact with a large reservoir of a liquid with density ρ and vis-
cosity μ shown schematically in Fig. 1. The liquid is assumed to
completely wet the capillary inner wall, hence the contact angle θ

is set equal to zero. The liquid is kept at a constant temperature,
which may be above or below a reference saturation temperature
of the vapor within the capillary by the value �T . Due to the tem-
perature difference, evaporation or condensation will occur at the
moving vapor–liquid interface.

We extend the equation of motion describing the rise of the liq-
uid body within the capillary, proposed by Lucas [2] and Washburn
[3],

ρ
d

dt
(hu) = 2σ

R
− ρgh − 8μ

R2
hu + pv (1)

to account for the possibility of phase change at the vapor–liquid
interface. This equation represents the balance of forces per unit
area of the horizontal cross-section, acting on the liquid body in
the vertical direction. Here, t is time, h(t) is a cross-sectional av-
eraged interfacial height with respect to the level of the liquid in
the reservoir, u is the average axial velocity of the fluid, σ is the
vapor–liquid surface tension, g is the gravitational acceleration and
pv is the dynamic pressure exerted by the vapor on the inter-
face, often referred to as vapor thrust or recoil. This pressure is
the result of the velocity jump which the vapor undergoes during
evaporation/condensation. Since the phase change creates a den-
sity jump, a corresponding velocity jump is necessary for the mass
flux to be continuous at the interface

ρ

(
u − dh

dt

)
= ρv

(
uv − dh

dt

)
= j, (2)

where j is the interfacial mass flux due to evaporation/condensa-
tion, and the subscript v denotes the corresponding properties of
the vapor.

The kinematic boundary condition at the interface requires [15]
that

u − dh

dt
= j

ρ
. (3)

Equation (3) states that the position of the interface depends on
the rate of interfacial mass transfer relative to the capillary-driven
flow.

The momentum flux jump condition at the interface, in con-
junction with Eq. (2), can be expressed as [15]

ρu

(
u − dh

dt

)
− ρv uv

(
uv − dh

dt

)
= j(u − uv) = −ρ − ρv

ρρv
j2, (4)

where the last term on the right-hand side represents vapor recoil.
Since ρv � ρ , it is possible to simplify the vapor recoil term in

Eq. (4) as

pv = − j2

ρv
. (5)

Equation (1) can now be rewritten as

ρ
d

dt

(
h

dh

dt
+ h

j

ρ

)
= 2σ

R
− ρgh − 8μ

R2

(
h

dh

dt
+ h

j

ρ

)
− j2

ρv
. (6)

It is worthwhile noting that in the governing equation (6), the
vapor recoil term always induces a pressure in the negative direc-
tion, opposing the capillary flow, regardless of whether evapora-
tion/condensation is present.

Several features of the flow considered here can be emphasized.
First, when phase change does not take place, j = 0, the interfa-
cial motion is driven by capillarity and is governed by the Lucas–
Washburn equation (1) without the recoil term, where u = dh/dt .
Next, in the presence of evaporation (condensation), j > 0 ( j < 0),
and therefore the motion of the interface will be slower (faster)
than with no phase change. Finally, despite the presence of phase
change, a steady state of the interface may be achieved being ex-
actly balanced by all factors involved.

At this point it must be noted that both evaporation and con-
densation influence the temperature field in the liquid, causing a
local decrease and increase, respectively, of the interfacial temper-
ature due to the latent heat of vaporization L. However, a full
analysis of the heat transfer and fluid flow near the interface [17,
18] requires the solution of the flow field in the vicinity of the
meniscus and contact line, and is therefore beyond the scope of
this paper. Such analysis would invalidate the use of the Lucas–
Washburn theory, in which the meniscus shape is considered to
be flat. Within this simplified framework, it may be possible to
consider the heat transfer by introducing an empirical heat trans-
fer coefficient, in a way similar to the contact-line friction factor
introduced by Hamraoui and Nylander [8]. We therefore assume,
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Table 1
Physical properties of water and diethyl ether, at 25 ◦C, compiled from Ref. [20]

ρ (kg/m3) μ (kg/m s) σ (N/m) L (kJ/kg) Mw (kg/mol)

Water 997.0 9.11 × 10−4 0.072 2360.0 0.018
Ether 708.0 2.23 × 10−4 0.016 377.0 0.074

for the purpose of this study, that the temperature in the liquid
is kept constant by some external means, say by heating the cap-
illary wall. The phase change occurring at a constant rate is then
driven by a temperature jump at the interface �T . The resulting
mass flux may be approximated using kinetic theory which in lin-
earized form reads [13–15]

j = k(T I − T v ) (7)

where T I , T v denote the temperature at the interface and in the
vapor, respectively, and

k = αρv L
T 3/2

v

(
Mw

2π R g

)1/2

. (8)

Here R g is the universal gas constant, Mw is the molecular mass
of the liquid, and α is the accommodation coefficient, taken here
as unity. The forthcoming study uses water and diethyl ether as
model liquids and their material properties are given in Table 1.
Diethyl ether is chosen for comparison with water due to its lower
surface tension, density and viscosity but higher volatility.

3. Equilibrium state and its stability

Equation (6) differs from the Lucas–Washburn equation through
the addition of the interfacial mass flux which enters the inertial
and viscous terms, as well as by the presence of the vapor recoil
term.

We first look for equilibria of the system. Under steady state
conditions, the equation of motion (6) reduces to

2σ

R
− ρg H − 8μ

R2

j

ρ
H − j2

ρv
= 0, (9)

where H is the equilibrium position of the interface, which can be
easily obtained as

H = Fca − Fr

F v u0 + g
. (10)

Here we have made the following definitions:

Fca = 2σ

ρR
, Fr = ρ

ρv
u2

0, F v = 8μ

ρR2
(11)

representing the contributions of capillarity, vapor recoil, and vis-
cous drag, respectively. We also make use of the fact that the
steady state velocity is given by u0 = j/ρ , as follows from the
kinematic boundary condition (3).

In the case where no interfacial mass transfer is present, Eq. (9)
reduces to the familiar balance of gravity and capillarity [19]. The
presence of interfacial mass transfer alters the equilibrium posi-
tion, as illustrated in Fig. 2, which shows the equilibrium height
of the meniscus H normalized by the equilibrium height in the
isothermal case H0. Evaporation always lowers the equilibrium
height, as expected, while condensation may result in an either
lower or higher position, depending on the mass flux expressed
here in terms of the temperature difference across the meniscus
interface �T . The interfacial mass flux manifests through two sep-
arate mechanisms, namely vapor recoil and mass loss/gain. Vapor
recoil always tends to lower the equilibrium height. However, in
the case of a sufficiently low condensation rate, the mass gain may
(a)

(b)

Fig. 2. Equilibrium position of the meniscus H scaled with its equilibrium height
in the isothermal case H0, as a function of the temperature difference across the
interface �T . (a) Water: 1, R = 1.5 mm; 2, R = 1 mm; 3, R = 0.5 mm. (b) Diethyl
ether: 1, R = 0.9 mm; 2, R = 0.6 mm; 3, R = 0.3 mm.

raise the equilibrium position to the point where vapor recoil be-
comes the dominant mechanism and the equilibrium position is
lowered. This effect is much more noticeable for diethyl ether due
to the fact that its vapor density is larger than that of water, re-
sulting in a corresponding decrease of vapor recoil, as follows from
Eq. (5).

We now consider the stability of the steady interfacial position
H by introducing a small disturbance to the equilibrium in the
form

h = H + ε(t), (12)

where ε(t) represents a small departure of the interface elevation
from its equilibrium.

Substituting Eq. (12) into Eq. (6) and linearizing the latter with
respect to ε(t), we obtain the following equation:

ε′′(t) + αε′(t) + βε(t) = 0 (13)

where primes denote differentiation with respect to time, and

α = u0 + F v , β = g + u0
F v . (14)
H H H
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Fig. 3. The maximal temperature jump across the interface which allows the stabil-
ity of the equilibrium height H , as a function of the capillary radius R . The solid
and dashed curves correspond to diethyl ether and water, respectively. The values
of θ = max�T shown here represent the limitation of the current model.

The (asymptotic) stability criterion for Eq. (13) requires that
α > 0 and β > 0 which is equivalent to

j > −ρ max

(
H F v ,

g

F v

)
. (15)

It is immediately deduced from Eq. (10) that when no interfacial
mass transfer is present, i.e. u0 = 0, the equilibrium is uncondi-
tionally stable, since in that case α ≡ F v > 0, β ≡ g/H > 0.

It also follows from Eqs. (10) and (14) that for �T �= 0, the equi-
librium height H vanishes at the same time when α is singular,
and these events take place when Fr = Fca. This is in fact a singu-
lar point of Eq. (6), as it implies that the interfacial height passes
through zero and may become negative. Also, when Fr > Fca, the
equilibrium height becomes negative. Thus, for Fr � Fca the Lucas–
Washburn model breaks down.

The equilibrium height of the system is affected by the phase
change, which either lowers or raises it. While evaporation always
lowers the equilibrium position, low rates of condensation will
raise it, up to the point where vapor recoil becomes the domi-
nant mechanism and lowers the equilibrium height. At sufficiently
high mass transfer rates, the equilibrium position can formally be-
come negative which is physically unacceptable. The states with
h � 0 represent the situations where a momentum conservation
law, leading to the Lucas–Washburn equation (1), is formulated
for a body of a zero or negative mass, which does not have any
physical meaning. This happens when α � 0. We find that the
equilibrium height H of the meniscus given by Eq. (10) is stable
as long as H > 0. Fig. 3 displays the stability limit determined by
α = 0 in terms of the maximal temperature jump across the inter-
face, as a function of the capillary radius R . When �T is outside
the range delineated by the appropriate curves in Fig. 3, the solu-
tions of Eq. (6) pass through h = 0 and the model loses its validity.
It should be noted, however, that this limitation exists not only
for the present theory but also for the Lucas–Washburn approach
in general even in the isothermal case. As an example, if a liquid
body is released from an arbitrary height much above its equilib-
rium position, the liquid inertia will cause the interface to pass
through zero elevation, and the theory is invalidated again.

When a stable equilibrium exists, Eq. (13) predicts the following
two possibilities for the system’s approach to it in the “long-time”
limit: when the discriminant δ ≡ α2 − 4β > 0, the system is over-
damped and a monotonic behavior is expected, whereas for δ < 0,
damped oscillations occur.

In the case where no interfacial mass transfer is present, the
transition from the oscillatory to the monotonic evolution of the
interface occurs at F v = 2

√
g/H . At this point, the viscous drag

is sufficient to suppress any “overshoot” due to the liquid iner-
tia. It is worthwhile noting, that

√
g/H corresponds to the natural

frequency of an inviscid-fluid meniscus with no phase change, as
follows from Eqs. (13) and (14).

The transition threshold determined by δ = 0, namely

δ0 = F 2
v − 4g

H
, (16)

corresponds for a given liquid to a critical value of the capillary
radius, e.g., R ≈ 0.47 mm for water. Finally, we note that the fre-
quency of the system oscillations is given by Ω = √

β − α2/4.
In the following section, the results of the numerical study are

presented to illustrate the various aspects of the capillary rise, as
they emerge from the described model.

4. Results and discussion

Equation (6) is solved numerically using the fourth-order
Runge–Kutta method for the physical parameters corresponding
to the two model liquids, namely water and diethyl ether, speci-
fied in Table 1. Equation (6) is a second-order differential equation,
thus it requires two initial conditions. It is clear that Eq. (6) has
a “mathematical” singularity at h = 0. However, this singularity is
not only a mathematical one but also an essential, physical singu-
larity already discussed above. Due to this singularity a small value
0 < ε � 1 is assigned to the meniscus height for the numerical so-
lution to begin: h(0) = ε and h′(0) = 0.

The time evolution of the interfacial elevation is shown in
Figs. 4 and 5, calculated for water and ether, respectively, and for
various values of the capillary radius R . The effect of the temper-
ature difference which induces the phase change, is apparent and
alters both the amplitude and frequency of the interfacial oscilla-
tions, when these are present. For any given capillary radius, ether
oscillates faster than water, possibly due to the lower surface ten-
sion which results in a smaller amplitude of motion. It may be also
seen in Figs. 4 and 5a that the water oscillations decay faster due
to the stronger damping effect of the higher viscosity of water.

Figs. 4 and 5 also show the differences between the interfacial
evolution of the evaporating and condensing cases. Figs. 4a and 5b
show that the difference between the evaporating and condensing
cases is small. This implies that the additional force due to va-
por recoil is the dominant mechanism there, rather than the mass
gain/loss.

As was previously stated, the vapor recoil induces a downward
force for both evaporation and condensation, so that without it
any difference in the evolution of the interface between the two
cases can be attributed to mass gain/loss. The effect of the mass
loss/gain is better seen in Figs. 6 and 7. The former shows the net
effect of mass gain and loss on the interfacial evolution, whereas
the latter presents the relative deviation η = h(t)/h(t;�T = 0) of
the meniscus height calculated without the vapor-recoil term from
that of the corresponding case with no interfacial mass transfer.
When only mass loss/gain is considered, the relative deviation of
the interface in the evaporation/condensation cases is exactly out
of phase and is slightly skewed toward condensation. This skew-
ness is a result of the different effect that mass loss/gain impart
on the flow. While the decrease of the meniscus height due to the
evaporated liquid is compensated by capillarity, the increase of the
meniscus level due to condensation is opposed by gravity. How-
ever, the contribution of the added mass to the total liquid mass is
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(a)

(b)

Fig. 4. Time evolution of the interfacial elevation h in the case of water. (a) R =
1 mm: the solid curve, �T = 0 (no phase change); the dashed curve, the evap-
orating case with �T = 0.8 K; the dot-dashed curve, the condensing case with
�T = −0.8 K. (b) R = 0.5 mm: the solid curve, �T = 0 (no phase change); the
dashed curve, the evaporating case with �T = 0.8 K; the dot-dashed curve, the
condensing case with �T = −0.8 K.

small. Thus, the net condensation effect is a larger meniscus ele-
vation during its rise and a correspondingly lower meniscus height
during its descent. In fact, the skewness is stronger for ether than
for water, since ether is lighter and therefore less affected by grav-
ity. This mechanism also serves to explain why, in general, the
differences between evaporation and condensation are larger for
ether than for water, as seen in Figs. 4 and 5a. The mass lost
through evaporation is not as strongly replenished by capillarity
(lower surface tension), whereas mass gained by condensation has
a smaller contribution to the total weight of the liquid body (lower
density).

The parameter δ, which determines whether the dynamics of
the meniscus interface is monotonic or oscillatory, is determined
for water and diethyl ether as a function of the interfacial tem-
perature jump, �T , for the capillary radius corresponding to the
isothermal critical radius of transition from monotonic to oscil-
latory flow, see Fig. 8a. Evaporation always leads to oscillatory
dynamics, due to a negative shift in the value of δ, while conden-
sation induces a monotonic behavior for low values of �T , which
(a)

(b)

Fig. 5. Time evolution of the interfacial elevation h for diethyl ether. (a) R = 1 mm:
the solid curve, �T = 0 (no phase change); the dashed curve, the evaporating case
with �T = 0.5 K; the dot-dashed curve, the condensing case with �T = −0.5 K.
(b) R = 0.5 mm: the solid curve, �T = 0 (no phase change); the dashed curve, the
evaporating case with �T = 1 K; the dot-dashed curve, the condensing case with
�T = −1 K.

turns to oscillatory for higher temperature differences. This char-
acteristic behavior sheds some light on the diverse effects on the
dynamics of the interface of the two mechanisms emerging in the
presence of interfacial mass transfer, namely vapor recoil and mass
loss/gain. Vapor recoil induces a retarding force which always acts
to lower the meniscus height, thus allowing a possible “overshoot”
at smaller capillary radii, despite a stronger viscous damping. Since
condensation adds mass to the liquid body, a slightly positive shift
in the equilibrium height eliminates, at low �T , a possible “over-
shoot” which leads to oscillations. At higher mass flux rates, this
effect becomes negligible as compared to the recoil force and os-
cillations are predicted, see Figs. 8b and 8c. As an illustrative ex-
ample, Fig. 8d shows the effect of a high evaporation rate on the
dynamics of a water body in a capillary of R = 0.47 mm, roughly
corresponding to the radius at which a transition from monotonic
to oscillatory dynamics is predicted in the isothermal case. As can
be seen, under the effect of evaporation, a distinct oscillation is
observed, while the corresponding isothermal dynamics is mono-
tonic.
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Fig. 6. The interfacial elevation h(t) as a function of time t calculated from Eq. (6)
without the vapor recoil term for water with R = 0.5 mm. The solid, dashed and
dot-dashed curves correspond to �T = 0—no phase change, the evaporating case
�T = 1 K, and the condensing case �T = −1 K, respectively.

Fig. 7. Time evolution of the relative deviation of the interfacial elevation normal-
ized with respect to that for �T = 0, η = h(t)/h(t;�T = 0) determined from Eq. (6)
without vapor recoil. The dashed curves correspond to ether with R = 0.5 mm:
1, �T = −1 K; 2, �T = 1 K. The solid curves correspond to water with R = 1 mm:
3, �T = −1 K; 4, �T = 1 K.
(a) (b)

(c) (d)

Fig. 8. (a) The contribution of phase change to the discriminant, �δ ≡ δ − δ0, as a function of the temperature difference �T , calculated from Eq. (6) near the critical
capillary radius: solid curve, water, R = 0.47 mm; dashed curve, ether, R = 0.24 mm. The domains of positive and negative δ correspond to the monotonic and oscillatory
behaviors of the interface, respectively. (b) The contribution of phase change to the discriminant, �δ ≡ δ − δ0, as a function of the temperature difference �T , calculated for
water: dot-dashed curve, R = 0.5 mm; dashed curve, R = 0.4 mm; solid curve, R = 0.3 mm. (c) Same as (b) for diethyl ether: dot-dashed curve, R = 0.4 mm; dashed curve,
R = 0.3 mm; solid curve, R = 0.2 mm. (d) Time evolution of the interfacial elevation h in transition from the monotonic dynamics to oscillations under the influence of
evaporation, calculated for water with R = 0.5 mm. The curves are presented in terms of the normalized height h/H , calculated for each case separately: solid curve, �T = 0
(no phase change); dashed curve, �T = 2 K.
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Fig. 9. (Upper panel) Oscillation frequency Ω0 [Hz] as a function of the capillary
radius R [mm] in the case of no interfacial mass transfer: solid curve, water; dashed
curve, ether. (Middle panel) Variation of the normalized oscillation frequency ω =
Ω/Ω0 with the temperature difference �T for water: solid curve, R = 1.5 mm;
dashed curve, R = 1 mm; dot-dashed curve, R = 0.5 mm. (Lower panel) Variation
of the normalized oscillation frequency ω = Ω/Ω0 with the temperature difference
�T for ether: solid curve, R = 1 mm; dashed curve, R = 0.5 mm; dot-dashed curve,
R = 0.25 mm.

The oscillation frequency, when oscillations are present, in the
case of no phase change, Ω0 is depicted as a function of the capil-
lary radius R in Fig. 9 (upper panel). The effect of phase change on
the normalized frequency ω = Ω/Ω0 of the oscillations, for water
and ether in capillaries of various radii R , is shown in Fig. 9 (mid-
dle and lower panels). In general, both evaporation and condensa-
tion increase the frequency of the oscillation, since the amplitude
of the oscillations is suppressed by vapor recoil, resulting in a
shorter oscillation period. However, for capillaries with a radius
near the critical radius corresponding to transition threshold from
oscillatory to monotonic dynamics of the interface, the effect of
mass gained by condensation causes a slight shift of the frequency
curve. This is best seen for ether where under a relatively low rate
of condensation, the frequency is first reduced before rising un-
der the influence of recoil. This is yet another manifestation of the
diverse stabilizing/destabilizing effect that condensation exerts on
the flow. For a reasonable temperature jump of �T < 1 K, this ef-
fect is only observable for capillaries of a small radius. Presumably,
this is due to the fact that with an increase of the capillary radius,
both the capillary driving force and the viscous drag decrease and
the flow becomes more sensitive to recoil. In contrast, with high
viscous damping and a dominant capillary force, the influence of
mass loss becomes more apparent.

5. Summary

The Lucas–Washburn equation, describing the motion of a liq-
uid body in a capillary tube is extended so as to account for
the effect of interfacial mass transfer due to phase change—either
evaporation or condensation. The system is shown to always pos-
sess a stable equilibrium state when the temperature jump is
confined to a certain range. The augmented equation contains con-
tributions related to mass loss/gain, which enter the viscous and
inertial terms, as well as an additional effective force, vapor re-
coil which occurs as a result of the velocity jump at the interface.
Our results show that several properties of the system behavior
are altered due to the phase change: the equilibrium height, the
transition from monotonic to oscillatory dynamics and the fre-
quency of the oscillations, when present. Two mechanisms associ-
ated with phase change are mass loss/gain and vapor recoil. Mass
gain/loss affect both the viscous and inertia terms. Vapor recoil
results in a force directed into the liquid body for both evapora-
tion and condensation. The diverse effect imparted by evaporation
and condensation manifests through the mass loss/gain mecha-
nism, in particular at lower rates of phase change. Evaporation
is shown to always lower the equilibrium height, raise the os-
cillation frequency and lower the threshold for the onset of the
oscillatory dynamics as the temperature difference across the in-
terface increases. On the other hand, condensation is shown to
have the opposite effect for low mass transfer rates, where the
gained mass leads to a higher equilibrium height, lower frequency
and a shift toward monotonic dynamics with an increase of the
temperature jump across the interface. However, as the rate of
condensation increases, this effect is overwhelmed by the vapor re-
coil force. At higher mass transfer rates and/or large capillary radii,
vapor recoil is the dominant mechanism influencing the interface
dynamics leading to a lower equilibrium height and higher oscil-
lation frequencies for both evaporating and condensing menisci as
compared to the isothermal case. The range of applicability of the
present theory is limited in terms of the rate of phase change, as
at its sufficiently high rates vapor recoil exceeds the capillary driv-
ing force and pushes the interface below zero level. The emergence
of a negative or zero value for the meniscus height invalidates the
Lucas–Washburn model framework.
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