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The motion and deposition of a particle translating perpendicular to a rigid, permeable
surface is considered. The lubrication approximation is used to derive an equation
for the pressure in the gap between the particle and the permeable surface, with a
symmetric shape prescribed for the particle. The hydrodynamic force on a particle is,
in general, a function of the particle size and shape, the distance from the surface and
the surface permeability, and its sign depends on the relative motion of the particle
and the background fluid permeating through the surface. As the particle becomes
flatter, this force generally increases and is more sensitive to the surface permeability.
In the case of a spherical particle, closed-form, approximate solutions are obtained
using perturbation methods, in the limits of small permeability and close approach
to contact. It is also shown that a sedimenting particle attains a finite velocity on
close approach, which scales as k1/2 and k for a sphere and a disc, respectively,
where k is the permeability per unit thickness of the surface. In the case of a particle
advected toward the surface, as is common in membrane filtration, a balance of
electrostatic repulsion and viscous drag is used to calculate a possible equilibrium
position of the particle, at some finite distance from the surface. The dependence
of the equilibrium and its stability is shown in terms of the ratio of electrostatic
and lubrication forces at contact, as well as the ratio of characteristic lengths over
which the two forces decay away from the boundary. The latter is found to be a
significant factor in determining the conditions under which a stable equilibrium
exists. These results are useful for estimating deposition propensity in membrane
filtration processes, as affected by operational conditions. C© 2013 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4812832]

I. INTRODUCTION

When a spherical particle slowly approaches a solid, impermeable boundary, consideration of
hydrodynamic interactions predicts a force resisting the approach. For a constant particle velocity,
this force is inversely proportional to the separation distance. The theory also predicts that, when
the particle motion is driven by a constant external force (e.g., gravity), an infinite time is required
for actual contact to be made with a smooth, planar boundary (see, for example, Ref. 1). This result
is relaxed when the interacting surfaces are rough, the fluid is compressible, or when either or both
surfaces are compliant.2–5 A finite force at contact has also been shown to occur when the solid
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boundary is permeable. This case was first studied by Goren,6 who solved the Stokes flow problem in
bi-spherical coordinates for a sphere approaching a thin permeable layer, for example, a membrane
of thickness �m and permeability k∗. The force at contact scales as (R/k)1/2, with R the radius of the
sphere and k = k∗/�m the membrane permeability per unit thickness. This result was later confirmed
by Nir,7 who specifically treated the contact problem using tangent-sphere coordinates. In a related
problem, Sherwood8 considered the force required to pull a sphere away from contact with a porous
half-space, in which case the force scales as (R2/k∗)2/5 as k∗ → 0, while for the case of a flat disc,
the force scales as R2/k∗. The half-space differs from the thin membrane by the effective length
over which the fluid must flow through (�m for the membrane) and the presence of a radial flow
component in the porous medium.

Other related studies considered the flow field and forces due to the motion of spherical porous
particles, in which the fluid in the porous layer obeys either a Darcy equation with a Beavers-Joseph
slip condition for the tangential velocity at the fluid-solid interface9, 10 or a Brinkman equation.11

More recently, the Green’s function for the Stokes flow near a porous slab, derived by Elasmi and
Feuillebois,12 has been extended to consider a sphere adjacent to a thin permeable slab, employing
either a boundary integral form13 or a distribution of singularities.14 A summary of these representa-
tive studies, the general problem treated and methods employed, is presented in Table I, along with
the themes of the present study.

The previously described theoretical frameworks all implicitly assume a scale separation be-
tween the characteristic sizes of the particle and pores. This assumption is supported, for example,
by numerical calculations of the force on a sphere approaching a pore.15 The results showed that for
a sphere of radius R, ten times greater than the pore size, rp, the force at a separation distance of 0.1R
deviates by only ∼8% from that predicted for the force near an impermeable wall. In fact, with the
geometry used by Yan et al.,15 one may approximate the effective permeability of a single cylindrical
pore in an area equivalent to the projection of an approaching, co-centric sphere as k ≈ φr2

p, where
rp is the pore radius and φ ≈ (rp/R)2 is the effective surface porosity. Based on this approximation, a
similar deviation of the force is predicted under an assumption of uniform permeability.6, 16 Compar-
ing these two approaches, it appears that the difference between accounting for the pore dimensions
and the uniform permeability assumption is not significant, and generally below 10%. Thus, for

TABLE I. Summary of studies on particle interactions with porous boundaries.

Author Problem treated Method Remarks

Goren6 Sphere translating to thin
porous layer

Series solution of Stokes
equations in bi-spherical
coordinates

Semi-analytical series
solution

Nir7 Sphere in contact with thin
porous layer

Stokes equations in
tangent-sphere coordinates,
reduction to ODE

Asymptotics for high/low
permeability

Sherwood8 Sphere in contact with
semi-infinite porous layer

Stokes equations in
tangent-sphere coordinates,
reduction to ODE

Asymptotics for high/low
permeability

Michalopoulou et al.9, 10 Porous/solid spheres in
relative motion, with
background flow

Stokes equations in
bi-spherical coordinates,
slip boundary condition

Semi-analytical series
solution

Davis11 Porous sphere moving
toward solid wall or porous
sphere

Stokes equations in
bi-spherical coordinates,
with Brinkman equations

Semi-analytical series
solution

Elasmi and Feuillebois13 Flow around sphere near
thin porous layer

Stokes equations in
boundary integral form

Numerical

Debbech et al.14 Flow around sphere near
thin porous layer

Fundamental solution of
Stokes equations

Minimizing functional of
singularity distribution

This paper Symmetric shape in
background flow, near thin
porous layer

Lubrication approximation Asymptotics and scaling
analysis
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R � rp the use of a macroscopically defined permeability is reasonably accurate and will also be
made in the forthcoming analysis.

In the case of an object sedimenting under gravity onto a surface, the motion of the particle
will be modified by a resistive force, dependent on the permeability of the surface as well as the
size and shape of the object. A different configuration may be motivated by filtration processes.
The hydrodynamic force on a particle in the vicinity of a permeable wall is important to membrane
separation applications, where particle deposition is a major concern, leading to productivity loss and
increased energy consumption.17 A useful way of predicting colloidal deposition in such systems is
made through a force balance accounting for surface interactions (e.g., electrostatic repulsion) and
the hydrodynamic “permeation drag.”18 The latter is caused by the presence of a background flow,
which advects material toward the membrane surface. It has recently been shown that for values
representative of practical membrane properties, this force can be orders of magnitude larger than
the Stokes drag in an unbounded fluid.16 Hence, a proper account of the hydrodynamic force is
crucial for any quantitative assessment of deposition propensity.

In this paper, we examine the problem of a particle approaching a thin permeable wall.
Specifically, we consider the hydrodynamic interaction at a close distance, smaller than the par-
ticle radius. A lubrication model is formulated, which is then used to explore the dynamics of the
particle approach to the surface and shape effects, with asymptotic forms found for the specific cases
of near contact, and a spherical particle. In Sec. II, we formulate the problem and the governing
lubrication equations. A perturbation analysis is presented in Sec. III, followed by calculations of the
pressure field and resulting force on the particle at close approach, as affected by the particle shape,
in Sec. IV. In Sec. V, the dynamics of the particle motion and deposition are presented. Finally,
Sec. VI presents our conclusions in brief form.

II. MODEL FORMULATION

We consider a particle immersed in an incompressible flow of a Newtonian fluid with constant
dynamic viscosity, μ, in close proximity to a permeable planar surface (see the schematic drawing in
Fig. 1(a)). Following Stone,19 the surface of the particle is modeled as a generalized symmetric shape
given by z = δ + R − (Rn − rn)1/n, where r, z denote the radial and vertical coordinates, respectively,
δ(t) is the distance of closest approach, n is an even integer and R is a characteristic length that would
correspond with the radius in the case of a spherical object (n = 2, see Fig. 1(b)). For n > 2, these
shapes have zero local curvature at the point of closest approach. It is further assumed that the planar
surface is uniformly permeable. As discussed above, this assumption corresponds to a requirement
that there exists a scale separation between the characteristic pore-size, rp, and particle size; indeed,

FIG. 1. (a) Schematic illustration of the problem geometry. (b) The generalized, symmetric shape used to model the particle,
shown for n = 2, 4, 10.
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in what follows it will be assumed that R � rp. Only translational motion, perpendicular to the
surface, will be considered with no rotation of the particle.

The hydrodynamic interaction between the particle and the wall is due to the “squeezing” of
liquid in the region confined by the two solid boundaries, which results in additional stresses. In the
case of a permeable wall, the liquid may be driven into or out of the gap, depending on the relative
motion of the sphere and the background flow. The axisymmetric velocity field (u, w) within this
gap is well described by the classical “lubrication approximation” (see, for example, Leal20 and
Oron et al.21), which is satisfied when δ � R. Under this approximation, the equations of motion
reduce to

∂p

∂r
= μ

∂2u

∂z2
,

∂p

∂z
= 0, (1)

while the continuity equation is

1

r

∂

∂r
(ru) + ∂w

∂z
= 0, (2)

in which u, w are the velocity components in the r and z directions, respectively, and p is the pressure.
At the solid surfaces, a no-slip condition holds for the radial velocity, i.e.,

u(0) = u(h) = 0, (3)

where h = h(r, t) is the gap between the sphere surface and the wall, which may be approximated,
using the first term in a Taylor series of the shape described above, as

h(r, t) = δ(t) + rn

n Rn−1
+ O

(
r2n

R2n−1

)
, (4)

with δ(t) denoting the minimum gap distance (see Fig. 1). We do not consider the possibility of slip
at the porous surface, consistent with the absence of a radial velocity component within the thin
porous membrane.

The boundary conditions on w, the z-component of the velocity, are prescribed through a
kinematic relation that accounts for the possible motion of each surface, as well as the fluid flux
through the permeable boundary. Thus, at the particle surface

w(z = h) = dδ

dt
, (5)

where dδ/dt ≡ −Vp is the velocity of the rigid particle; Vp > 0 then corresponds with motion toward
the membrane. We further define the background permeation V0, forced through the membrane by
the imposed background pressure p0, as

V0 ≡ k∗

μ

(
p0 − pref

�m

)
, (6)

in which pref is the pressure on the other side of the membrane, k∗ is the Darcy permeability and
�m the membrane thickness (in what follows, these two are lumped and we use the permeance k =
k∗/�m). In the absence of the particle, this uniform flow would be the state of the system. We note that
in the case considered here, the pressure drop is driving the flow downward through the membrane,
i.e. p0 > pref, but this may be reversed if the downstream pressure is higher than the background
fluid pressure, pref > p0. In what follows, and without loss of generality, we take pref to be identically
zero.

The downward motion of the sphere relative to the surface will lead to an increase or decrease
of the pressure (and, hence, the permeation), depending on the sign of the difference in relative
velocities of the particle and background fluid, Vp − V0. For example, if the particle moves faster
than the background fluid, as would occur if it is acted upon by an external force directed toward
the membrane, the pressure in the gap would increase at the approach of the particle, resulting in a
resistive hydrodynamic force. If, on the other hand, the fluid motion is faster than the particle, as
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may occur if there is a repulsive interaction between the particle and the surface (e.g., electrostatic),
then the pressure in the gap will decrease relative to the background pressure.

Additional permeation is induced by the pressure increase/decrease within the gap. Noting that
under the lubrication approximation, the pressure does not vary with z (see Eq. (1)), the fluid flux at
the boundary may be related directly to the pressure at any radial location by

w(z = 0) = −k∗

μ

dpm

dz
= − k

μ
p|z=0, (7)

where pm refers to the pressure in the membrane and, as in (6), pref = 0. The derivation procedure is
now straightforward. Integrating (1) twice using (3), substituting into (2) and integrating across the
gap, we obtain

w(h) − w(0) = 1

12μr

∂

∂r

(
rh3 ∂p

∂r

)
, (8)

which, upon substitution of the boundary conditions given by (5) and (7), results in

1

12μr

d

dr

(
rh3 dp

dr

)
− k

μ
p + Vp = 0, (9)

for the pressure within the gap, where we now use ordinary derivatives since the pressure is regarded
as quasi-steady and only implicitly time-dependent through the particle motion. This equation is to
be solved subject to the boundary conditions

dp

dr
= 0 at r = 0, (10)

from symmetry considerations and

p = p0 as r → ∞. (11)

It is convenient to re-write (9) in terms of the ‘excess’ pressure in the fluid relative to the
background pressure p0, i.e., p̂ = p − p0. Since kp0/μ ≡ V0, we have

1

12μr

d

dr

(
rh3 d p̂

dr

)
− k

μ
p̂ + (Vp − V0) = 0, (12)

and the excess pressure p̂ decays to zero far from the sphere. This equation illustrates that, dependent
on the relative motion of the permeating fluid and the particle, the pressure within the gap (relative
to the background pressure p0) can be either positive (Vp > V0) or negative (V0 > Vp).

A. The scaled equation

Equation (12) is made non-dimensional by scaling r with the characteristic gap length-scale,

�n = (nδRn−1)1/n, (13)

and h by δ, while the velocity scale is taken as V ≡ Vp − V0, the velocity of the particle relative
to the background fluid. Based on these, the pressure scale is chosen as p̂ = (12μV �2

n/δ
3)P . With

these scaling transformations, the resulting equation becomes

1

s

d

ds

(
s H 3 d P

ds

)
− β P + 1 = 0, (14)

in which s = r/�n,

β = 12k�2
n

δ3
(15)
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is the permeability parameter and the scaled gap height is now given as H = 1 + sn. The corresponding
boundary conditions are

P(∞) = 0,
d P

ds
|s=0 = 0. (16)

B. The force on the particle

In the lubrication regime, the z-component of the dimensional force f on the particle may be
calculated by integrating the pressure within the gap, and hence we define a scaled force

Fn = f

24cnπμV �4
n/δ

3
= c−1

n

∫ ∞

0
s P(s) ds, (17)

where cn = ∫ ∞
0 s P(s; β = 0) ds. Under this choice of scaling, the reference force is that for a

squeeze flow with an impermeable wall. For example, in the case of a spherical particle, c2 = 1/16
and the reference force becomes 6πμV R2/δ since �2 = (2Rδ)1/2. For general n, the numerical
constants are, for example, c4 = 1/32 and c10 = 1/25 and it has been shown by Stone19 that this
reference force scales as δ4/n − 3R4(n − 1)/n.

III. ASYMPTOTIC ANALYSIS

A. Approach to contact

To establish typical orders of magnitude, it is convenient to work with the dimensional
equation (9). As the separation distance between the particle and the wall becomes small, bal-
ancing the terms in Eq. (9) as δ → 0 suggests that the pressure scales as p ∝ μV/k, and so the
characteristic gap length-scale takes on the form

�n (δ→0) ∝ R (k/R)
1

3n−2 . (18)

In the case of an axisymmetric object, the force on the particle scales as f3D ≈ p · �2
n , while for an

elongated, two-dimensional shape, the force per unit length will scale as f2D ≈ p · �n, so that, using
(18), we may write

f3D ∝ R (R/k)
3n−4
3n−2 , f2D ∝ (R/k)

3n−3
3n−2 . (19)

Thus we have, for the sphere or cylinder (n = 2), the following scalings for the forces at contact

fsphere ∝ μV R
3
2 k− 1

2 , fcylinder ∝ μV R
3
4 k− 3

4 . (20)

For a spherical particle, the k−1/2 dependence agrees with the results of Goren6 and Nir,7 while
for the cylinder we recover the result found by Sherwood.22 The cylinder is shown to be more
sensitive to the wall permeability, which may be explained due to a larger surface area exposed to
the squeezed fluid-filled gap. Finally, for the flat disc, n → ∞ in Eq. (19), we find that the force
scales as f ∝ μV R2/k, consistent with Sherwood8 (with a different definition of the permeability).

We note that, in performing the scaling analysis for the cylinder, neglect of end effects is justified
provided �n is much smaller than the length of the cylinder. Stokes’ paradox does not apply to an
infinite cylinder next to a porous wall, since the force exerted by the wall is equal and opposite to
that exerted by the cylinder, giving a dipolar far-field.

B. Asymptotic forms for a spherical particle

We now proceed to perform a perturbation analysis, involving the permeability parameter β

for the case of a spherical particle, n = 2. First, an asymptotic solution for β � 1 (corresponding
to small permeabilities, since β ∝ k/δ2) is sought in (14) using a regular perturbation expansion,



073103-7 Ramon et al. Phys. Fluids 25, 073103 (2013)

i.e., P = P0 + βP1 + . . . , resulting in the following set of perturbation problems:

1

s

d

ds

(
s(1 + s2)3 d PN

ds

)
=

{−1 (N = 0)
PN−1 (N ≥ 1)

, (21)

where P0 is the solution for a rigid, impermeable surface (in which case, p0 = 0 and V0 = 0). Note
that for the sphere, �2 = √

2Rδ, p = (24μV R/δ2)P and β = 24kR/δ2. The leading-order terms in
this expansion may be found, for example by using Mathematica, as

P(s) = 1

8(1 + s2)2
− β

96(1 + s2)3
+ (3 + 4(1 + s2))β2

9216(1 + s2)4
+ O(β3). (22)

Next, we treat (14) for the case where β � 1, which corresponds to the asymptotic approach
to contact (δ → 0 for fixed k). This limit leads to a seemingly singular perturbation problem with
the trivial “outer” solution P = 0 that satisfies the far-field boundary condition outside the gap. In
order to resolve the “inner” region, we re-scale (14). Re-defining the pressure as P = β−1P∗ and
balancing all terms in the equation, we identify the inner coordinate η = β−1/4s, and the re-scaled
equation becomes

1

η

d

dη

(
η(β−1/2 + η2)3 d P∗

dη

)
− P∗ + 1 = 0. (23)

We now seek a regular expansion for β � 1, in the form

P∗(η) = P∗
0 + β−1/2 P∗

1 + β−1 P∗
2 + . . . . (24)

The perturbation equations are given, at O(βN), by

1

η

d

dη

(
η7 d P∗

N

dη

)
− P∗

N = −1

η

d

dη

(
3η5 d P∗

N−1

dη
+ 3η3 d P∗

N−2

dη
+ η

d P∗
N−3

dη

)
, (25)

for N ≥ 3, where at lower order (N = 0, 1, 2) the terms on the right-hand side drop out sequentially.
The pressure field to O(β−1) is found to be (using Mathematica)

P∗(η) = 1 −
(

1 + 2η2

2η2
+ 3

16η6

1

β1/2
+ 9 − 58η2 + 4η4

256η10

1

β

)
e
− 1

2η2 . (26)

The leading term of this expansion is the “contact” approximation, which shows that the pressure
becomes practically uniform within the gap, with a value P  1/β.

C. Asymptotic form for a symmetric shape near contact

The ideas illustrated above also allow us to draw conclusions about the detailed pressure
distribution for symmetric shapes in the limit of β � 1. Beginning with Eq. (23) generalized for
shapes H = 1 + ηn, and by inspection of (26), we may use ξ = 2/(2 − 3n)η(2−3n)/2, to transform
Eq. (23) into

d

dξ

(
ξ (3n+2)/(2−3n) d P∗

0

dξ

)
− ξ (3n+2)/(2−3n)(P∗

0 − 1) = 0, (27)

so that for general n the expression for the “contact” pressure distribution may be written as

P∗
0 − 1 ≈ ξ 3n/(3n−2) K3n/(3n−2)(ξ ), (28)

in which K(ξ ) is the modified Bessel function. With the general n scaling, the expansion of P∗

for β � 1 now has powers of β−n/(3n − 2), which again reveals the force scaling at contact, since
F ≈ P∗

0 · η2 ≈ β(3n−4)/(3n−2), consistent with (19).
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IV. EFFECT OF PARTICLE SHAPE ON THE LUBRICATION FORCE

In the case of a spherical particle (n = 2), the force may be calculated using Eq. (17),

F2 ≡ f

6πμV R2/δ
= 16

∫ ∞

0
s P(s) ds, (29)

where it is recalled that the reference force is the well-known lubrication result for a sphere translating
perpendicular to an impermeable boundary. Performing the integration using the first few terms in
the pressure field found for β � 1, we obtain

F2 = 1 − β

24
+ β2

384
+ O(β3), (30)

which shows that the magnitude of this force is reduced to a degree determined by the wall perme-
ability. It is useful to re-cast this expansion as a correction factor for the Stokes drag,

f

6πμRV
= R

δ
− R2

δ3
k + R3

16δ5
k2 + O(k3). (31)

Next, for β � 1, under the inner scaling, the force is given by

F2 = 4

β1/2
− 6

β
+ 3

2β3/2
+ O(β−2), (32)

which we re-cast as

f√
24πμV R3/2/k1/2

= 1 − 4δ√
3/2(k R)1/2

+ δ2

64k R
+ O(δ3), (33)

where the reference force is now the drag force on a sphere at “contact.” The leading term of this
expansion, if cast as a correction to the Stokes drag, is (2R/3k)1/2 and recovers the contact force
derived by Goren6 using an exact calculation, and by our scaling analysis presented in Sec. III A. The
leading-order term in the asymptotic expansion for the force at “contact” may also be calculated for
other shapes. For example, for the cases n = 4, and n = 10, we have, respectively, F4 = 0.252β−4/5

and F10 = 0.337β−13/14, which confirms the generalized scaling shown in (19).
The pressure field and resulting force were computed numerically using Mathematica and are

plotted in Figures 2 and 3, for different values of n. For the sphere (n = 2), the asymptotic expansions
for small and large β are compared with the numerical calculations of the force, showing excellent
agreement (see Fig. 3 inset). In order to cover the entire range of β values, it is necessary to include
the first 6 terms in each expansion. In all cases, the pressure field (Fig. 2) follows a similar trend
of flattening within the inner region (r < �n), corresponding to the particle leading-edge becoming
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FIG. 2. The effect of shape (n), and the parameter β = 12k�2
n/δ3, in which k is the permeability and δ is the separation

distance, on the pressure within the gap between the particle and the surface. (a) The pressure distribution, P∗ = βP, calculated
using Eq. (14), for two representative values of β. (b) The pressure at the leading edge of the particle as a function of β,
which illustrates the effect of shape on the approach to the asymptote P ∼ β−1.
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Shown in the inset are the asymptotic solutions for the sphere, n = 2, given by Eqs. (30) and (32) in the case of small and
large β, respectively, and compared to the numerical solution of Eq. (14).

flatter; an abrupt decay is then observed at a distance r ≈ �n from the point of closest approach. The
force on the particle follows from this distribution, and becomes more sensitive to the permeability
parameter β as the particle becomes flatter, in agreement with the asymptotic forms.

V. PARTICLE MOTION AT CLOSE APPROACH

In general, the creeping motion of the particle at close approach (i.e., as δ/R → 0, consistent
with the lubrication approximation), can be written as the force balance

2π

∫ ∞

0
r p̂(r ) dr + fext = 0, (34)

where fext is the net external force acting in the z direction on the particle, e.g., gravity or surface
interactions (electrostatic, van der Waals forces, etc.). In terms of the scaled variables, as described
above, the lubrication force balance can be written as

24cnπμ�4
n

(
Vp − V0

)
Fn/δ

3 + fext = 0, (35)

where we recall that Vp = −dδ/dt is the velocity of the particle and, from (17), Fn(β)
= c−1

n

∫ ∞
0 s P(s) ds accounts for the surface permeability and the particle shape, in which β

= 12k�2
n/δ

3. The choice of the scaling is such that Fn = 1 for an impermeable surface
(β = 0).

A. Sedimentation under gravity through a quiescent fluid

As a first illustration, we consider the gravitational sedimentation of a particle perpendicular
to a rigid, permeable surface when there is no background permeation (V0 = 0). In this case,
the hydrodynamic force is directed upwards (positive), resisting the motion and proportional to
Vp = −dδ/dt , and fext = −mg, which is the buoyancy-corrected weight of the particle, and is
directed downward. For general n, we write

dδ

dt
= − mg

24cnπn4/nμR
4(n−1)

n

δ
4−3n

n

Fn(β)
. (36)

For the case of a sphere, n = 2, we have �2 = (2Rδ)1/2 and β = 24kR/δ2. Substituting these into
(36) with the leading-order term of the asymptotic solution (32) for β � 1, F2(β) ≈ 4β−1/2, we find
that

Vp = τ−1
g (k R)1/2 , (37)
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FIG. 4. The motion of the particle toward a surface due to a constant gravitational force, calculated using Eq. (36), shown
in terms of a scaled separation distance, δ/R. (a) The effect of shape (n), calculated for k/R = 10−5, as well as for an
impermeable wall. (b) The case of a sphere (n = 2), numerical calculations and the asymptotic approach to a constant
velocity, Vp ∝ (k R)1/2, for different scaled membrane permeabilities, k/R.

where τg = √
24πμR2/mg is a sedimentation time-scale. It is therefore predicted that, at close

approach to the permeable surface, the sphere attains a constant velocity, which scales as k1/2. For
a non-spherical, axisymmetric object, the velocity at close approach is also constant and will vary
as, for example, Vp ∝ k4/5 for n = 4, dictated by the force scaling at close approach; in the limit n
→ ∞ the particle velocity is proportional to k. Similarly, the force scaling may be used to infer that
the finite velocity of a cylinder will scale as k3/4. The approach velocity is therefore predicted to be
largest for the sphere. This result is intuitive, since a flatter object experiences a greater degree of
interaction with the boundary, which results in a larger lubrication force. These results also suggest
that a finite time would be required for contact to be made, in sharp contrast to the infinite time
predicted for contact with an impermeable surface.

Given some initial position, δ(0), the sedimentation time and particle position may be calcu-
lated numerically from Eq. (36), where Fn(β) is calculated using either the asymptotic expansions
(30) and (32) (for a sphere) or numerically. Characteristic position curves for particles (with n = 2,
4, 10) sedimenting toward a permeable surface are shown in Fig. 4(a) and are compared with the
expected trajectory for an identical particle approaching an impermeable wall (β = 0). The asymp-
totic result for the close approach of a sphere is computed for varying permeability by matching
an initial position with the numerical solution, beyond which they are both in very good agreement
(Fig. 4(b)).

B. “Permeation drag” balanced by repulsive surface forces

Next, we consider a neutrally buoyant particle carried toward the surface by the fluid permeating
through the surface (at a rate V0) under the imposed pressure, p0. Far from the surface, the particle
is force free and is simply advected by the surrounding fluid. In that case, V ≡ V0 − Vp = 0 and
there is no hydrodynamic force on the sphere. However, including surface interactions, e.g., electric
double-layer repulsion, results in an additional force at close approach. Electrostatic repulsion may
slow down the motion of the particle, so that now V �= 0 and the particle begins to experience a
hydrodynamic ‘drag’ exerted by the fluid flowing past it. This force is directed toward the surface,
so that the question of whether the particle will deposit onto the surface becomes one of whether it
is possible to balance the electrostatic repulsion force and the hydrodynamic permeation drag. Other
surface forces, e.g., van der Waals, solvation, etc. are not included to keep the discussion simple.
However, these forces may be readily incorporated into the force balance.

In the case of a spherical particle, a symmetric electrolyte and weakly charged surfaces, the
electrostatic repulsion force may be approximated as23

Fedl ≈ Rζ

λ
exp(−δ/λ), (38)
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in which

ζ = 64πε0ε(kbT/e)2 tanh

(
zeψp

4kbT

)
tanh

(
zeψm

4kbT

)
(39)

is a parameter characterizing the electrostatic interaction (with dimensions of energy per unit length,
or force) and

λ =
(

ε0εkbT

2zc0e2

)1/2

(40)

is the Debye length, characterizing the length-scale over which the electric double layer prevails
(typically, this length is of the order of 10 nm). Here, kb is Boltzmann’s constant, T is the absolute
temperature, ψ is the surface electric potential (subscripts p and m for particle and membrane,
respectively), c0 and z denotes the background electrolyte concentration and valency, respectively,
e the elementary charge, ε0 is the permittivity of vacuum and ε is the relative permittivity of the
liquid.

In this case, the lubrication interaction results in a ‘suction’ force, directed downward, while
the electrostatic repulsion is directed upward, resisting the approach of the advected particle. Using
Eqs. (35) and (38), the motion of a spherical particle at close approach may be written as

d δ̂

dτe
= exp(−δ̂/λ̂)

V̂0 Fd (δ̂)
− 1, (41)

where the scaled separation distance is δ̂ ≡ β−1/2 = δ/(24k R)1/2, which characterizes the length
scale over which the lubrication force decays away from the surface, and we define a drag correction
factor, 4Fd (δ̂) = F2(δ̂−2). The same length-scale is also used to define a scaled Debye length,
λ̂ = λ/(24k R)1/2, signifying the ratio of characteristic decay lengths for the electrostatic and viscous
forces. Finally, we have defined a scaled time, τe = V0t/(24k R)1/2, and the parameter

V̂0 =
√

24πμV0 (R/k)1/2 λ

ζ
, (42)

which represents the ratio of the viscous to electrostatic forces at contact, and is directly proportional
to the permeation velocity, and inversely proportional to k1/2, illustrating that as the membrane
becomes less permeable, viscous suction forces increase.

Equation (41) may be used to calculate the particle trajectory and to find the equilibrium point,
if it exists, where a particle is held stationary at some distance away from the surface, by a balance
of the hydrodynamic and electrostatic forces (see Fig. 5). The occurrence of such equilibria has been
reported experimentally in the membrane filtration literature.18 In such cases, the observed apparent
deposition was completely reversible, and deposited particles were released simply by shutting off
the permeation. In the present analysis, deposition implies that δ̂ = 0, since a smooth surface is
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FIG. 5. The position, δ̂ = δ/(24k R)1/2, of a sphere approaching a charged, permeable surface, carried by the permeation of
the surrounding fluid, as a function of time, scaled by V −1

0 (24k R)1/2. Calculations made using Eq. (41) for various values of
the parameters λ̂, the scaled electric-double-layer thickness, and V̂0, representing the ratio of viscous lubrication forces and
electrostatic repulsion.
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the electrostatic and viscous decay lengths, for the case where the two forces at contact are equal, V̂0 = 1, illustrating the
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as in (a), with λ̂ = 1, illustrating the transition between a single equilibrium, two equilibria, and no equilibrium, as V̂0 is
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considered. However, for a rough surface this effective distance may correspond to the roughness
scale.

Representative trajectories of a spherical particle toward a charged permeable surface have
been calculated and are shown in Fig. 5. The scaled parameters V̂0 and λ̂ are seen to influence the
nature of the particle approach and whether contact would be made. For example, in cases where
an equilibrium position is reached away from the surface, its distance from the surface increases in
the presence of a thicker electric double layer (larger λ̂). In cases where deposition occurs (signified
by a particle reaching δ̂ = 0), the trajectory exhibits two distinctive forms. The first, occurring for
larger λ̂, follows a smooth deceleration of the particle until contact is made, whereas at smaller
λ̂ an initial deceleration phase is followed by acceleration to contact. The latter behavior may be
explained by considering the equilibrium properties of the system. The range of the electrostatic
interaction is represented here by the parameter λ̂, the ratio of the Debye length to (kR)1/2, a length
scale representative of the distance from the boundary over which permeation-induced suction is
dominant. An illustration of the interplay between the hydrodynamic and electrostatic forces is
given in Fig. 6, which shows their decay away from the surface and the effect of varying the
range of electrostatic repulsion (increasing λ̂) and the magnitude of viscous suction (increasing V̂0).
Comparing the decay of the forces provides visual indication of whether an equilibrium exists, since
it occurs when there is an intersection of the force curves. We note that the viscous suction force is
scaled such that it has a value of 1 at contact and an initial slope of −3/2 (given by the re-scaled
close approach asymptotics, (33)), whereas the electrostatic repulsion has a value of 1/V̂0 at contact
and decays with an initial slope of −1/λ̂. Thus, for V̂0 ≈ 1 and δ̂ � 1, it follows from Eq. (41) with
the particle velocity set to zero and the leading order term of (33), that

δ̂eq ≈ 1 − V̂0

λ̂−1 − 3
2 V̂0

, (43)

which may be used to find the approximate equilibrium point where the force curves intersect. The
equilibrium point may occur for V̂0 just over or just under 1, depending respectively on whether λ̂

is greater than or less than 2/3. The same applies for the stability of the equilibrium, with solutions
for V̂0 > 1 being unstable. Due to the ultimate shape of the force curves (see Fig. 6), there are other
solutions occurring at larger values of δ̂. As illustrated in Fig. 6(a), given identical electrostatic
and hydrodynamic forces at contact (V̂0 = 1), with increasing λ̂ the curves proceed from having no
intersection to having a single intersection, with the transition occurring at λ̂ ≈ 0.55. In a similar
fashion, Fig. 6(b) shows that, given a characteristic EDL thickness (here, λ̂ = 1), increasing the
relative magnitude of the lubrication force (V̂0) shifts the curves from having a single intersection
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from a region of a single, stable equilibrium to a region of three equilibria, followed by a transition to two equilibria at
λ̂ = 2/3.

(one stable equilibrium) to having two intersections (two equilibria, stable and unstable) until, finally,
the curves do not intersect and no equilibrium exists.

Furthermore, the range of the electrostatic and hydrodynamic interactions creates a transition
between a regime where a single, stable equilibrium exists as long as V̂0 < 1, and a regime where
two equilibria are possible, one stable and one unstable (see Fig. 7(a)). However, looking closely at
the region around V̂0 = 1 reveals that this transition occurs through an intermediate region, in which
three equilibria exist, two stable and one unstable (see Fig. 7(a)). This region is bounded on one side
by the value for which the force curves first intersect (at λ̂ ≈ 0.55 where the three solutions reduce
to one through a saddle-node bifurcation), and on the other side by λ̂ = 2/3 where their slope toward
contact converges. When λ̂ < 0.55, the trajectory leading to deposition will follow a monotonic
deceleration; however, for λ̂ > 2/3, deposition may follow a two-stage deceleration/acceleration
that appears to emerge from the bifurcation of the initially stable branch which, upon increase of V̂0

beyond a critical value, enters the unstable region (shaded red in Fig. 7). For a fixed value of V̂0 > 1,
deposition will occur when the initial position is smaller than the unstable equilibrium point. For an
initial particle position larger than the value of the smaller, unstable equilibrium point, the trajectory
will tend to the stable equilibrium point.

VI. CONCLUDING REMARKS

The present work explores the hydrodynamic interaction of a rigid particle and a thin, permeable
membrane. A symmetric particle shape is prescribed and its effect on the hydrodynamic interaction
is explored using the lubrication approximation. Specifically, the force on the particle and its motion
toward contact are elucidated. An approximate solution is found for the case of a sphere, in the
limits of small permeability and near contact. In all cases, the surface permeability lowers the
lubrication force on the particle, compared to an impermeable boundary. For the generalized shape,
the hydrodynamic force at near contact scales as (R/k)(3n − 4)/(3n − 2), becoming more sensitive to
the wall permeability as the particle becomes flatter (increasing n). We find that for a sedimenting
particle, a finite velocity is attained, regardless of shape, which is shown to scale as k1/2 for a sphere,
k3/4 for a cylinder and as k for a flat disc. These results indicate that a finite time exists for the particle
to make contact with the permeable surface.

Finally, the advection of a particle toward a charged, permeable surface is considered, and the
possible equilibrium position of a particle is demonstrated, resulting from a balance of a repulsive
surface force and the drag exerted by the fluid permeating through the membrane. It is shown that
when a long-range electrostatic interaction is present (as may be found in dilute electrolyte solutions)
two equilibrium positions may exist; a stable equilibrium will prevail up to some critical ratio of
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the hydrodynamic and electrostatic forces, whence it will transition to an unstable region leading
to deposition. It is further found that there exists a critical scaled electrostatic screening length,
λ̂ ≈ 0.55, below which equilibrium is always stable when the ratio of the viscous to electrostatic
forces at contact, V̂0 < 1. Conversely, when λ̂ > 2/3, deposition may occur when V̂0 exceeds some
critical value. An intermediate region is found for 0.55 < λ̂ < 2/3, where three equilibria are
possible, two unstable and one stable. Initial particle positions within regions of unstable equilibria
are found to lead to deposition in all cases. These results are useful for estimating the hydrodynamic
contribution to deposition propensity of colloidal particles in membrane filtration processes.
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